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Onset of chaos in a pendulum coupled to a thermal environment
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We consider the onset of chaos in a pendulum driven by a Brownian noise environment. The behavior of the
Lyapunov exponents of the system as a function of the strength of the coupling to the thermal environment is
investigated for two models of thermal couplifgiven by the Langevin equation and by random stop-start
motion). For sufficiently strong coupling to the environment, the motion is nonchaotic and almost all trajec-
tories are stable but, for each initial velocity and realization of the Brownian noise, an exceptional set of
unstable trajectories exists, in analogy to the existence of basin boundaries in deterministically driven systems.
The initial points of the unstable trajectories form a fractal set, the dimension of which is zero for coupling to
the environment greater than(@mperature-independenritical value, grows as the environmental coupling
is decreased, and equals one at the transition to chaotic benB1063-651X98)08403-1

PACS numbeis): 05.45:+b, 05.40+j, 02.50.Ey

I. INTRODUCTION explored how the dynamics of a randomly driven system
evolves towards chaos within the nonchaotic regime, as a
In this paper, we analyze the dynamical behavior of asystem control parametée.g., the coupling to the environ-
simple pendulum, the motion of which is driven by Brown- men) is varied. Specifically, to what extent can one identify
ian forces only. In particular, we will be concerned with the precursors of chaotic behaviior the nonchaotic regiméor a
onset of chaos in such a system. The study of chaotic behavandomly driven system?
ior in a variety of randomly driven systems has recently at- From the point of view of conventional nonlinear dynam-
tracted some interest, motivated both by the aim of a deepécs, one is faced with a number of difficulties in studying a
understanding of Brownian motion and also by an interest imandomly driven system(1l) The perturbation due to the
the synchronization effects of a common source of externathermal environment is not a “small” addition to a regular,
noise on a pair ofcoupled or uncoupleéddynamical systems deterministic driving force—in fact, the thermal noise is the
[1-13. The study of such problems lies between the tradi-only stimulus of motion and, without it, the system remains
tional domains of statistical mechanics and nonlinear dynamstatic at a point of stable equilibrium. Thus, analysis of the
ics. The simple pendulum is one of the most important pro-dynamics of the unperturbed, deterministic system gives lim-
totypes of nonlinear motion in classical mechanics and is @&ed insight into the behavior of the noisy syste(®) in
natural candidate for study as a randomly driven system. contrast to well-defined phase-space structures such as at-
The presence or absence of chaos in randomly driven sy$ractors, basins of attraction, and separatrices, which serve to
tems may be phrased in terms of the question: given twaelassify the asymptotic trajectories of deterministic systems,
uncoupled dynamical systems subjected to a common extethe phase-space dynamics of a thermally driven system are
nal random driving force(a common “thermal environ- apparently quite featureless; the motion is usually ergodic
ment”), to what extent are their final states similar? Equiva-and the asymptotic occupation of the phase space can be
lently, one may ask the question: for a specific history of thecharacterized entirely by the Boltzmann distribution for the
thermal environmenti.e., a specific realization of the ran- appropriate temperatur€3) Because noise is dominant in
dom external forces is the final condition of the system at the dynamics, analysis in terms of return maps yields fea-
large times sensitive to its initial condition or is it determinedtureless and uninformative resultgl) In the understanding
solely by the history of the environment? A system sensitiveof routes to chaos, phenomena such as period doubling or
to its initial condition is said to be chaotic; a system deter-intermittency cannot be expected since the driver of the sys-
mined solely by its environment is nonchaotic. tem (i.e., the thermal environment to which the system is
Both in the general case of dynamical systems with raneoupled has a complex, random behavior, which is specified
domly varying parameters3,6] and, in the specific case of only in statistical terms and in which no periodic behavior is
Brownian motion[4], these questions have been addresseévident.
previously in terms of the expected Lyapunov exponent A satisfactory approach to the analysis of chaos in ran-
along a typical trajectory of the system and in terms of in-domly driven systems, which partially overcomes some of
termittent bursting of snapshot attractdB in the chaotic the difficulty in addressing itemd) and(2) of the previous
regime. It has been show,8] that, in the limit of very paragraph, involves the use of what we may call “specific
strong coupling to the environment, the motion of the systenrealizations” of the thermal environmeft,3,4]. In practice,
at large times is determined entirely by the noise and is inby this we mean that apecificsequence of random forces
dependent of the initial state of the system. For sufficiently(or impulse$ is chosen from the appropriate distribution for
weak coupling to the environment, the state of motion of thehe thermal environment, specifying the exact values of the
system at large times is sensitive to its initial condition and ighermal forces over a sufficiently long-time interval. Once
not determined solely by the realization of environmentalthis is done, we now have a deterministic problem, albeit one
noise. However, to our knowledge, it has not been directlywith a highly complex sequence of driving impulses. The
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behavior of the system subjected to this specific realizatiomere. Brownian motion is usually modeled using the Lange-
of the thermal environment is then analydedy., the time-  vin equation 13,14, in which the particle is considered to be
averaged Lyapunov exponents may be calculated or separaoving in a viscous medium, with a viscous force propor-
trices may be identified, as discussed beloim order to tional to velocity, while subjected to random impulses from
obtain statistically relevant properties, this entire analysigthe microscopic thermal motion of the medium. Although
(i.e., choice of specific sequence of random forces over #is is the standard mathematical representation of Brownian
long-time interval, followed by analysis of the resulting motion, it is not an explicit, fully microscopic mechanical
driven systemmust be repeated many times and the appromodel of the physical motion since, at the microscopic level,
priate average over the driven systems obtaifEdr some  all collisions with the particles of the medium are elastic and
properties, e.g., the Lyapunov exponents, time averaging igiscous damping merely represents the time-averaged trans-
equivalent to ensemble averaging and a single long-time rdfer of momentum from the particle under consideration to
alization of the thermal forces is sufficient to give the appro-other particles in the system.
priate averagesThis approach may thought of as applyinga  As we will see in this section, the Langevin equation is by
“common noise” signal to an ensemble of systems, eacno means the only valid mathematical representation of the
member of the ensemble having a different set of initial conphysical process of Brownian motion. The physical model
ditions. Indeed, an important physical application of thewe introduce below includes the Langevin equation as a spe-
analysis of chaos in randomly driven systems is to the uneial limiting case. It also includes the other mathematical
derstanding of synchronization of uncoupled systems efmodel of thermal coupling(so-called stop-start motion
fected by common noise signals. [4,15]), which we will find convenient to use in our subse-
The behavior of the simple pendulum subjected to a sinuguent analysis of chaotic behavior in the pendulum coupled
soidal driving force has been well studigt?] and displays to a thermal environment. Indeed, there is a wide range of
rich, well-defined phase-space structures, e.g., basins of gthysically valid mathematical models of Brownian motion.
traction, with their associated attractors and separatrices. A is important, therefore, that the qualitative physical results
system driven by Brownian forces can be classifié®,10  one obtains in the mathematical analysis of the motion
as chaotic or nonchaotic, depending on whether its largesthould not depend on the specific mathematical model of
(average Lyapunov exponent is positive or negative, respec-Brownian motion chosen.
tively, in a very similar way to the deterministically driven ~ The physical model of thermal couplifid0] is as fol-
systems. However, it is of interest to know whether any anatows: We consider a particle of magas moving in one di-
logs of the phase-space structures present for the simplamension, colliding intermittently with the particles of a sur-
sinusoidally driven pendulum are also present for the pendwounding gas, each of mass’. We assume that the
lum driven by Brownian forces, and whether such structureslistribution of velocities of the particles’ is Maxwellian,
evolve in a systematic way as the control parameterg.,  so that their mean velocityv')=0 andm’((v')?)=KkgT,
the strength of coupling to the environmpate changed. In  whereT is the absolute temperature of the syst&mijs the
this paper, we concentrate principally on the behavior of theBoltzmann constant, andX) represents the thermal average
pendulum driven by Brownian forces in the nonchaotic re-of a quantityX. Consider a single elastic collision between
gime. Despite the difficulties in analyzing phase-space struche particle of masm, with velocity v, before the collision,
tures for randomly driven systems that we cited above, weind one of the other particles’, with velocity vi. An
will demonstrate the existence of structures that are analq;|ementary Ca|cu|ation’ using conservation of energy and

gous to the boundarie®r separatricgshetween basins of momentum, shows that the velocity, of the particle of
attraction in the sinusoidally driven pendulum, and quantifymassm after the collision is given by

the changes in those structures as the coupling to the envi-
ronment decreases and the system evolves towards chaos. m—m’ 2m"
The remaining sections of this paper are organized as fol- Vo= oy Vit e Ve @)

lows: In Sec. Il, we consider the motion of a particle of mass

m, confined to move in one dimension, coupled to a thermalfter n collisions(in the absence of other forces on the par-

environment consisting of a gas of particles of mass This  ticle m), its velocityv,, is given by

provides a physical model of one-dimensional Brownian mo-

tion [10]. Two limiting cases of this physical model will 2m
2

m+m’ =3

n !

m—m’ "~

m+m’

m—m’
m+m’

subsequently be used in the analysis of Brownian motion of ~ Un+1~ V1 Uj

the simple pendulum. Numerical results obtained from simu-
lations of Brownian motion of the pendulum are presented inyherey ! is the velocity of the particle of mass’ in the jth
Sec. lll and some relevant analytic results are proven in Segg|lision.
IV. The overall conclusions of this study are discussed in Assuming theuj’ are independent and identically distrib-
Sec. V. uted (with mean zero and variandgT/m’) it then follows
from the central limit theorem that, as—», v, has a
Gaussian distribution witm((v,)?)=kgT. This is as one
would expect on general thermodynamic grounds, since the
In this section we consider a simple, microscopic me-particle of masan is a classical system in thermal contact
chanical model of Brownian motion in one dimension. The(via the collision procegswith a reservoirthe collection of
properties of this model have been investigated in detail irparticles of massn’) at temperaturd. Indeed, this general
Ref.[10] and we give only a survey of relevant propertiesthermodynamic argument shows that, if the particle of mass

Il. PHYSICAL MODEL OF THERMAL MOTION
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m experiences an additional foreedV/dx due to an exter- of auxiliary fields in lattice gauge theori¢&5| and other

nal potentialV(x), wherex is the position of the particle, interacting lattice fermion problenj46].

the probability distribution ok at large times is given by the ~ In the analysis of the chaotic behavior of the pendulum

Boltzmann distribution eXp-V(x)/ksT])/Z, where the parti- coupled to a thermal environme_nt, stop-start moti_on proves
tion function Z= fexd —V(X)/ksT]dx Thus, the asymptotic to be somewhat more formally simple than Langevin motion.

distribution of position and velocity of the particia de- [N Stop-start motion, the phase space of the pendulum motion

pends only orT and does not depend on the strength of itsc@N be taken to be one dimensional, as follows: The initial
coupling to its surrounding environment. This coupling velocity v, for the nth step(i.e., the time interval between

strength is determined by the mass$ of the particles in the then—1 collision and thenth collision) is chosen at random
environment and the average rate at which the particle from a Maxwell velocity distribution for temperatufie The
collides with them. Nevertheless, as we shall see in Secs. Iffth Step is then a mapping(t=n7—7)—x(t=n7) pro-

and IV below, the strength of the coupling of the partile duced by integrating Newton's equations of motion for the
to its thermal environment does affect the sensitivity of the(Undampedl pendulum motion with initial velocitydx/dt
particle’s actual final trajectory to its initial position, given a =Un- Thus, the phase space for the motion is one dimen-
specific realization of the thermal environmeie., a spe- Sional because the state of the system, the pendulupis

cific sequence of velocitie&'}) specified byx(n7) alone and the velocities, play the role

.

In order to obtain the standard Langevin equation fromOf parameters of the environmental driver, rather than phase-

the equations of motion defined by Ed), we assume that space coqrdinates of the driven system. We may then view
the masam’ is much less tham and that the time\t be- the evolution of the system fromn=0 tot=nr as a product
tween collisions is small. The viscous drag is then propor-Of n randomly chosen mappings of the circle onto |tsel_f.
tional to the ratiom’/At. From Eg.(1) we see that the On the other hand, the phase space of the Langevin mo-

. : : ; TR tion of the pendulum is two dimensional, with phase space
change in velocity o in a single collision is given b . .
g ty g g y coordinatesx(t) and v(t)=dx/dt, as is the case for the

, usual damped simple penduluib2]. The evolution of the
(v —v), system from its initial stat¢x(t=0), v(t=0)] to its final
state[x(t), v(t)] is specified by Eq(4), once a particular
(random) choice of the forcing termy(t’) for 0<t’<t has
been made. Although the damped system is two dimensional,
we will find it convenient to consider the evolution of the
constant velocity slices of initial conditions, specified by
dx/dt=constant at=0. All such slices are equivalefias-
-7 2) suming ergodicity of the motigrfor the topological consid-
At 27 erations below and this approach emphasizes the essential
similarity to stop-start motion. Thus, when we refer to a
wherey is a constant, we obtain the Langevin equafiddl,  particular “noise realization” for the damped motion, we
assume that the initial velocity slice has been specifigth
d_U_ ot (i 3 velocity chosen from a Maxwell distributiopmlong with the
da " 70, ©) realization of the forcing termg(t’) for O<t’'<t.
Although Langevin motion and stop-start motion appear
where 7(t) is Brownian white noise with(n(t)n(t"))  quite different in their detailed implementation of the ther-
=2ykgTS(t—t')/m. If the particlem experiences an addi- mal coupling, many of the results that are obtained from each

2m
T m+m’

Av

wherev is the its initial velocity and '’ is the velocity of the
particle with which it collides. Taking the limith’—0 and
At—0, keeping

tional conservative force from an external potentglx),  are remarkably similar, if the stop-start coupling with inter-
Eq. (3) becomes val 7 between collisions is compared with the Langevin cou-
pling with viscous coefficienty=2/7. This relation between
d?x 19V dx 7 and vy is obtained from Eq(2), by settingm=m’ and 7
2 " max Yot (4 =At. We will discuss this relation further in Sec. IV, below.

The fact that the coupling to the environment is intermittent

Another useful and natural limit of Eq1) occurs when and abrupt _in the '_stop—start motiop while.it is continuous in
m’=m, i.e., when the particles of the surrounding mediumthe Langevin motion has a relatively minor effect on the
have the same mass as the partidieln this case the par- results,'partlcularly at higher temperatures. _The numerical
ticlesm andm’ exchange velocities in each collision. Con- '€Sults in Sec. lil and the analytical results in Sec. IV are
sidering only the motion ofn, we then obtain the so-called strlklngly similar in every regard for both for_ms_of motion.
stop-start Brownian motiof#,15], where the velocity ofn is For this reason, it would seem Fhat the quall_t_atlve nature of
reset at thenth collision and replaced with a velocity, . ;, the results below.h.ave much wider ap_pll_caplhty than to the
chosen at random from a Maxwell distribution at tempera{W© models explicitly analyzed and it is likely that any
ture T. In the simulation of this type of motion, below, we physma]ly sensible coupllng o.f the pendulum to. a thermal
make the further assumption that the collisions occur at regu/€Servoir would reveal qualitatively similar behavior.
lar intervals ofAt= 7. In this motion, no damping is explic- IIl. NUMERICAL RESULTS
itly introduced and the particlen moves conservatively in '
the potentialV(x) in the intervals between collisions. This  We have performed numerical simulations of both the
form of motion has been used in the Monte Carlo samplind.angevin and the stop-start models of Brownian motion of
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the simple pendulum. In the presentation that follows, we se 0.2 : — :

the massn=1 and use the variabbe= /27, whereg is the o () demped motion s

angle of the pendulum to the downward vertical. The poten ETIANRS -

tial V(x) = —cos[2m7x]/27, so thatV has a period of 1 in the 04l \ - i

variablex. 06 i
For stop-start motion, the equation of motion during eact ™ 08| B b = 0.1 — i

step(i.e., between consecutive collisignis that for free mo- gL kgT =05 - i

tion of the pendulumd?x/dt?= — sin[27x]. Numerical inte- g2k kpT = 1.0 — i

gration was performed by the standard “leap-frog” method 14l i

[15]. A leap-frog integration time step of approximately 0.02 16 ! ! ! ! . ! |

was found to give well-converged results for the integration 0 02 04 06 08 1 12 14 16

of the equations of motion. The sequence of initial Gaussial U

velocitiesv , (with variancekgT) for each step was generated

by a Box-Muller transformation of uniform pseudorandom 05 | . | | |

numbers generated by a doulig4-bit) precision floating o (b) stop-start motion

point version of the subroutine “RAN3” given in Ref17], p v

which is based on the subtractive pseudorandom numb EENC N\, )

generator of Knuth18]. The coordinate was represented in - 7

machine quadrupl€l28-bif) precision for the analysis of the A -15 .

fractal structure of “breaks”(see below although, for the 9 kT =01 — -

calculation of other quantities, double precision is sufficient. 25k ﬁg% = (1’:8 S

In stop-start motion, the specific realization of the environ- sl i

ment is determined by the sequence of random velocitie . . . . .

{v,}, which is determined by the initial seed of the pseudo- '3'50 05 1 15 9 95 3

random number generator. T

For the damped motion, the Langevin equation, @y.is
numerically integrated using the following modification of
the leap_frOg met.hOd'.WhICh eXp“qtly includes _d_amplng. Let 1/y for damped motion, antb) 7 for stop-start motion, at tempera-
s be .the |ntegrat|_on time step. leen the positioft) arjd tureskgT=0.1, 0.5, and 1. I@) A\, is the larger Lyapunov expo-
velocity v(t) at timet, the positionx(t+s) and velocity nent; in (b) there is only one exponent.
v(t+s) at timet+s are generated as follows: A random
impulse, év=2ysksT{, where { is a Gaussian random
variable with unit variance, is applied to the velocity at time
t: i.e., v(t")=v(t7)+dv. The velocity at the time
t+(s/2) is then found by analytically integrating

FIG. 1. The Lyapunov exponent, of the thermally driven pen-
dulum as a function of inverse environmental coupling strenggh,

This completes the integration of the damped equations of
motion over the integration time st¢p,t+s]. In the limit,
v—0, this procedure reduces to the usual leap-frog integra-
tion method.

In the Langevin implementation of the thermal coupling,
dv B , the specific realization of the environment is determined by
W_F_W(t ) ®) the sequence of velocity impuls¢sv} applied at timest

=s,2s,3s,... which, as in the case of stop-start motion, is
determined by the initial seed of the pseudorandom number
generator. As mentioned in Sec. Il, the initial velocity slice
v(t=0) for Langevin motion was chosen from a Maxwell
distribution. For each value of the damping coefficigrthe
integration time steg used was 0.1/. (Some integrations

over the intervalt<t’<t+(s/2), takingF=—dV/dx at x
=X(t) to be constant over this interval. This gives

1—exd — ys/2] oV
v(t+s/2)=exp:—yslz]v(ﬁ)_w_

Y X x=x(t) ' were carried out with a time stepof 0.05/y, with negligible
change in results.
The position at timé +s is then
A. Average Lyapunov exponents
X(t+s)=x(t) +sv(t+s/2), (6) Shown in Fig. 1 is the Lyapunov exponent versus inverse

environmental coupling, numerically calculated for both
and the velocity at timé+s~ (just before the next velocity types of motion at various environment temperatures. For the
impulse is found by integrating Eq(5) over the intervak damped motion, the larger Lyapunov exponii] (shown
+s/2<t’'<t+s, taking F=—9V/dx, at x=x(t+s) from  was calculated from the ensemble average,
Eq. (6), to be constant over this interval, so that
1=

\ ! flde+wdv<ln[M]> P[x,v], (7)
v(t+s7)=exd — ys/2]v(t+s/2) =t Jo - | Ax(to)]| Sv o

1—exd —ys/2] dv

. by integrating the equation of motion, E¢4), for initial
Y X X=X(t+s) values,



[X,(t=0),v,(t=0)]=[x—&2p] and
[Xo(t=0),v,(t=0)]=[x+§&2p],

where£=10"%. On each integration time step, the impulse
dv given tov, was the same as that givendg. The dif-
ference Ax(t’) is equal to [Xy(t")—xq(t"),vo(t")
—v4(t")]. For each value of x,v), ({In{|AX(t)[/|AX(to)[})s,
denotes the average value of|lx(t)|/|Ax(to)[} from 4 statis-
tically independent realizations of the noise sequehtig
over the time interva]0,t]. Each integration was carried out
for a total time oft=100/y and ty=4/y. If the distance
|Ax(t")| became greater than 1Hor less than 10'° at any
timet’, it was rescaled to equal 10 and the rescaling fac-
tor accounted for in the calculation af,. The asymptotic
distribution P[x,v] of the positions and velocities is given
by the Boltzmann distribution,

exd — (V(X)+v%/2)/kgT]
V2mks TS5 exd —V(x)/kgT]dx

For the stop-start motion, the phase space of the system

P[x,v]=
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-4 T T T
45+ _
5k _
-5.5 =

z(nT) L

6| -5.5 = |
6.5 - -6.5 - -1 4
K 7.5 X U
. . 0.15 0.155
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FIG. 2. Final coordinatex(n7) vs initial coordinatex(0) for
stop-start motion withr=1, using a particular selection of random
velocities{v,v,,...,vn}. The total integration time wars=500
and the temperature wagT=1. The points on the main graph are
for 100 equally spaced values »f0). Theinset shows the graph
fQr grid spacinge= 10~ 4 near the first break in the main figure.

one dimensional and the Lyapunov exponent shown in Fig. 1

IX( 1)

was found by evaluation of the ensemble average,
7X(0) PLx(0).v],

x=% foldx(O)fj:dv In
(8)

of the length expansion factor [(ax(7)/x(0)|,()-,] for a
single time intervalr between collisions. In this expression,
x(0) is the position at the start and 7) is the resulting
position at the end of the time intervglgiven that the initial
velocity v(0)=v. The derivative|dx(7)/x(0)|,(0)=, Was
found by integrating théundampe@l motion over one time
interval 7 for initial values,x;(t=0) andx,(t=0), a dis-
tance 107 apart.

A fixed grid inx andv (rather than a Monte Carlo sam-
pling [4]) is used for the numerical evaluation of the integral
in Egs.(7) and(8). The grid spacing irx is uniform on the
interval [0,1] and a nonuniform grid of is used, where the
spacingAv between consecutive grid valueswfis chosen
so thatAv exd —v%2kgT] is constant. A grid of 108 100

X(0)=v

B. Exceptional trajectories

The above calculations, giving a negative average
Lyapunov exponent of the system for strong coupling to the
environment, predict the long-time stability tyfpical trajec-
tories, given a particular realization of the thermal environ-
ment. If the largest average Lyapunov exponent of the sys-
tem is negativgas is the case for large or small 7), then
typical Brownian trajectories are stable and, hence, are in-
sensitive to small changes in initial conditions. Even for
large changes in initial conditions, given a particular realiza-
tion of the thermal impulse§.e., the sequende } for stop-
start motion or the sequen¢év} for Langevin motion, the
final physical trajectory at large times is found to be inde-
pendent of the initial conditions of the pendulum. However,
although this is the case falmostall trajectories(in the
statistical sengeit is not true for all. For each realization of
the thermal impulses, there is at least one initial condition
(and, in general, infinitely manywhich gives rise to an un-
stable trajectory, for which the derivativax(t)/dx(0)— o
ast—oo. These unstable initial conditions have zero statisti-

points was found to give very well converged values for thecal weight and do not contribute to the average Lyapunov

integrals. Particularly for large values gfor small values of
7, this ensemble-average method of evaluati@gs more

exponent\, but their presence is an important precursor of
the onset of chaos as—0, as we shall see in the following

numerically efficient than the time-average method, wherenalysis.

one calculates the average scaling rate over a single, ve

ry Shown in Fig. 2 is the graph of the final coordina(e )

long trajectory. We have checked, for a number of values ofersus initial coordinat®(0) for largen, obtained with stop-

vy, 7, and T, that the values of obtained from ensemble
averaging are the same as those from time averaging.
The principal features af as a function of inverse envi-
ronmental coupling strengttr or 1/y) are the presence of a
deep minimum neatr=0.6 or 1/,=0.25 and a crossing to
positive values near= 1.5 or (for higher temperaturgs/y

start motion using a specific, representative selection of
Maxwell distributed velocities 1 ,v,,...,v,. [Qualitatively
similar results are obtained in damped motionX@r) versus
x(0) for constant initial velocity slicesAlmost all points on
the graph have values of(n7), which differ only by an
integer, and correspond to the same final physical state of the

=0.9. The minimum is deeper for stop-start motion, particupendulum. The step lengthwas chosen such that the ex-
larly at low temperatures, for which the curve exhibits apected Lyapunov exponent is negative ahx{n7)/dx(0)

second local minimum near=1.8. For higher temperatures,

—0 asn—o for almost allx(0); thus, the graplisee Fig. 2

the transition to chaotic behavior occurs at larger values ofs flat almost everywhere. However, by including the full

the coupling to the environmertte., smaller inverse cou-
pling strength for both forms of motion.

value ofx (not just its physically relevant fractional pawe
see that the graph in Fig. 2 contains a set of “brealf®Jints
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0.2 : : : : tially since theaverageLyapunov exponent along a typical
o .t trajectory is negative. However, fluctuations in the Lyapunov
A exponent occur and it may remain positive for some substan-
02 7 tial interval. Over this confined interval of time;(t) and
0.4 - X,(t) may diverge sufficiently from each othlg20] that their
Aa(?) 06k i separation becomes comparable tqThis occurs when the

trajectory happens by chance to spend a long time near an

08+ 7 unstable equilibriunx=n+1/2) After that time x;(t)*=1
A1t p may come close t®,(t) and remain so for all times after, no
12 ! ! ! ! subsequent fluctuation in the Lyapunov exponent being suf-
0 20 40 60 80 100 ficiently large to overcome the average negative value that

causesx;(t) £ 1 to converge exponentially to,(t). At the
level of resolution defined by the grid spacing,we may
FIG. 3. Separatiot x(t) =X,(t) —Xx,(t) vs timet for two points  then say that a break occurs betweg(0) andx,(0).
on opposite sides of a discontinuitybreak” ) in the graph shown If we now wish to locate the position of the break at a
in Fig. 2. The initial separatiodx(0)=10"". higher level of resolution and consider the evolution of a
finer uniform grid of m points (with spacinge/m) initially
at which the graph is discontinugushich are the bound- lying betweenx;(0) and x,(0), it immediately becomes
aries between the basins of attraction for final valuex of clear that the structure of breaks has a statistically self-
which differ by a nonzero integer. similar structure, as follows: Once(t) =1 has converged
The existence of at least one such bréb&th for stop- close tox,(t) (at some timey>0), them points that initially
start motion and for any constant initial velocity slice in lay betweerx;(0) andx,(0) have been stretched around the
damped motionis ensured by the periodic character of theentire circle.(We note again that this stretching in practice
potentialV(x): since trajectories starting &(0)=0 and at occurs over a relatively confined interval in the evolution of
X»(0)=1 experience identical forces throughout their mo-the system—see Fig.)3The dynamics of the systefdeter-
tion, their trajectories always remain precisely one periodmined by the selection of velocities,) is statistically homo-
apart; i.e.,X,(t)—x.(t)=1 for all t. This is immediately geneous in time, since all, are identically distributed ran-
clear from the fact that the two trajectoriesximorrespond to dom variables. Thus, the evolution of the finer grid on
identical trajectories of the physical system. The equivalenfx;(0),x,(0)] (which has been stretched to the full circle at
statement in terms of the physical varialfldor pendulum t=ty) and the structure of breaks formed on that interval
motion, which has the topology of a circle, is that the non-aftert=t, is essentially identical to that of the coarser grid
simply-connected topology of the circleg(t=0) does not on[0,1] aftert=0.
allow it to be mapped onto a single poifitt— ) without at Thus, what appears as a single break onearid may
least one breakpoint of discontinuity occurring. In terms of appear composed of many ‘“sub-breaks” on a finefnf)
the physical variable, there is only one basin of attraction, grid (see Fig. 2 Although the specific number of breaks and
so that the breaks are not basin boundaries for the physic#he positions at which they appear in the grid depends on the
system in the usual sense. However, the physical trajectoriespecific realization of the thermal environmehg., the se-
of the pendulum, by which different initial points reach the ries of velocitie{v,v,,...} chosep, the structure of breaks
final state, change winding number abruptly at the discontimust appear statistically similar at all levels of resolution.
nuities in x(t—«) and the breaks define initial points of Because of the way in which breaks are formed by the ran-
exceptional trajectories along which the Lyapunov exponentlom dynamics, the formation of breaks on finer grids corre-
of the randomly driven system is positive. sponds to dynamics at later stages of evolution of the system.
We emphasize that the mapping given by each stepThis is analogous to the formation of fractal basin boundaries
x(nT—7)—x(n7), is continuous and that it is only in the for the sinusoidally driven pendulupi2,21.
limit n—oo that the graph is strictly discontinuous. However, In the Langevin implementation of thermal coupling, the
the numerical simulations show that “breaks” typically breaks we identify are the intersection of the constant initial
emerge(i.e., are resolved at any given level of numerical velocity slicev(0)=v with the fractal basin boundaries of
accuracy over a short interval in the evolution of the systemthe system driven by the sequence of impulsés}. Each
and remain intact for all later times. To see this, we examindasin corresponds to initial conditions that lead to final tra-
the separatiodx(t) =x,(t) — X4 (t) versus timd (see Fig. 3  jectories with the same integer part ©f (Again we note
for two close initial conditionsx;(0) andx,(0), onopposite  that almost all initial conditions lead to the same final physi-
sides of a discontinuity“break”) in the graph ofx(t— ) cal state of the pendulum, i.e., the same fractional paxt, of
versusx(t=0). At small timesAx(t) is approximately zero. so that these are not basin boundaries for the physical mo-
Over a short interval of timée.g., fromt~20 tot~45 in  tion.)
Fig. 3, we find thatAx(t) changes abruptly to a nonzero A fractal dimensiond of breaks may be defined and cal-
value, close to its final valuax(t—w)=m, which is an culated by successively examining sub-breaks in the follow-
integer. ing procedure, which is suggested by the qualitative discus-
The formation of the break illustrated in Fig. 3 is typical sion, above: a long sequence of velocitjeg} is chosen and
of the break formation found for the models considered herea uniform grid of m initial points is evolved. The grid is
During a typical intervalx,(t) andx,(t), adjacent points at analyzed for breaks in the graph of final versus initial posi-
t=0 on a uniform grid with spacing, converge exponen- tion (as in Fig. 2. One of these break intervals is chogah
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FIG. 4. Fractal dimension of the break structure, defined in
Eq. (9), vs inverse coupling strength,«for damped motion ang
for stop-start motion, at temperatukgT= 1.

random and a finer uniform grid ofn initial points on that
interval is evolved using theame sebf velocities{v,}. This
grid of m points is, in turn, analyzed for breaks, one of its
break intervals chosen, amd uniformly spaced points on
that interval evolved, again using the same velocifieg,
and so on. The fractal dimension is then defih2d] by

: 9

wheren,, is the average number of sub-breaks that appear o

each grid ofm points. For the Langevin implementation of

the motion, the fractal dimension of breaks for the constan

initial velocity slices, given in Eq(9), is equal tod,—1,

whered, is the fractal dimension of the basin boundaries in

the full two-dimensional space of initial conditiofs,v].

The fractal dimension of breaks versus environmental

coupling strength is shown in Fig. 4 for a temperatlgd
=1. Each point was calculated by averagithgpver seven
generations of “sub-breaks” withm=100 (from e=10"?
down to e=10"1%) for 100 separate realizations of the ran-
dom noise. We find thal is zero for values of 1/ less than
approximately 0.3 and values efless than 0.7 and that

approaches 1 near the transition to chaotic behavior for eac

type of motion. These features will be discussed in detail i
Sec. IV C, below.

IV. ANALYTIC RESULTS

A number of features of the behavior of the Lyapunov
7= P/l4,3P/4,5P/4, . ..

exponent shown in Fig. 1 and the fractal dimension shown i
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—2mx. In this limit, the Lyapunov exponents for the Lange-
vin motion are approximately the same as for damped simple
harmonic motion, viz.,

Y Y
~— —+ _—
0% 2_RE\/4 21,

both of which are negative for all values of Thus, the
motion is nonchaotic for arbitrarily weak coupling to the
environment at sufficiently low temperatures. We see that
taking the larger Lyapunov exponeft sign) in Eq. (10)
gives a good approximation th; [see Fig. 1a)] for the
Langevin motion at temperatuigsT=0.1. Even at larger
temperatures, we see from Figallthat the deep minimum

in N1(y) occurs near the critical damping facteg= 87

for small amplitude motiorfor 1/y,= 1/\/87=0.19935.

The low-temperature Lyapunov exponent for stop-start
motion may also be calculated exacfy0] and its form re-
veals the origin of the sharp minima seennirof Fig. 1(b).

By considering the equations of motion for two trajectories
infinitesimally close tox(t), it is straightforward to show
that the derivative (t) =dx(t)/dx(0) satisfies the equation

(10

ot

T —K(t)f,

11

whereK (t) =d2V/dx? atx=x(t), with the initial conditions
le anddf/dt=0 att=0. For sufficiently low tempera-
[ures,x~0 andK(t)~2q for all t. Thus, Eq.(11) can be
integrated analytically to givé(t) =cos/2xt) and the low-
temperature Lyapunov exponent for stop-start motion, with a
time interval r between collisions, is

A(T)~% In|cog \277)|. (12)

We see thal, given in Eq.(12), is always nonpositive and,
as in the case of Langevin motion, the system is nonchaotic
for arbitrarily weak coupling to the environment at suffi-
%iently low temperature.

The low-temperature approximation &f7) given in Eq.

n(12) has infinitely deep minima at values ofr

=P/4,3P/4,5P/4, . .., where P=\27 is the period of
small-amplitude oscillations abowt=0. In the harmonic ap-
proximation, any two particles started with the same velocity
reach precisely the same position at the end of a time interval
This gives rise to the immediate,

Fig. 4 can be understood by an analysis of the motion ifperfect synchronization achieved by stop-start motion for

various limiting cases. First we consider the low-temperatur

limit, where the system is almost harmonic. Then we exam-

ine the regime of strong couplinge., very largey or very

small 7). Finally, we demonstrate some exact results con

éhese values of-

At nonzero temperature, these minima are no longer infi-
nite but they remain reasonably close to the valuesr of

=P/4=0.627, P/4=1.88, etc. As the temperature in-

cerning the fractal structure of breaks, calculated numerically'¢2S€s, these mi_nima become_less prpnounced as the statis-
in Sec. 11l B, above, and derive some corresponding resultdc@l weight of points neafx,v]=[0,0] in the Boltzmann

for the Lyapunov exponents at arbitrary temperatures.

A. Low-temperature limit

In the limit kgT<<1/4r, the Boltzmann distribution for the
coordinate of the particle is concentrated nea0 and the
system is approximately linear, with a force dV/dx~

distribution decreases. The low-temperature minima at larger
values of 7 are more strongly suppressed at high tempera-
tures than the first minimum. This is as one might expect,
since nonlinear effects have a larger effect on trajectories
integrated over longer times

Although \(7) given in Eq.(12) is usually negative, it
reaches zero at=P/2,P,3P/2, ... . This is closely related
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to the failure to reach thermal equilibrium, discussed in Refwhich is identical to the expression faf7) in Eq. (13), with
[10], for the harmonic oscillator when the timeis a mul- 7 replaced by 2y. This is in accord with the derivation of
tiple of the period. Clearly, the change of sign)dfr) close  both the Langevin equation and the stop-start motion from
to 7=1.3 for nonzero temperatures is strongly associatedhe physical model of colliding particles presented in Sec. Il.
with the first zero of the low-temperature approximation for ~ As the temperatur& increases, we see in Fig. 1 thd)
A7), andX ((y) increase for small values efand 1/. This is in
accord with Egs.(13) and (14); as the temperature is in-
B. Strong-coupling limit creased, the average curvaturd//dx? decreases because

W ider th bi . the Boltzmann weight becomes larger near the unstable equi-
e now consider the system at arbitrary temperature Iy, point, x=1/2, where the curvature is negative. As

the very-strong-coupling limiflarge y or small 7). In this T— ¢, all positionsx become equally likely and
limit, the two models give the same largest Lyapunov expo- '
nent whenr=2/y. Using the results of Ref4], we find that 92V 1 92V
for stop-start motion, — — dx=0.
P <ax2>_>fo X2 dx=0
7 [V
Mr)==5{-z) as7-0. (13)  However, as shown in Ref[4], the thermal average
(8?V19x?) is positive for all finite temperatures, and so the

To calculate the average stretching and contraction of phaséarger Lyapunov exponent is always negative for sufficiently
space areas in Langevin motion, we consider the phase-spalééde coupling to the environment.
flow, given by

C. Folding and the structure of breaks

d—szX(x,v)zv, We now turn to consideration of the fractal structure of
dt breaks, for which numerical results were presented in Sec.
Ill. We will demonstrate that the fractal dimensich de-
dv _ a fined in Eq.(9), is exactly zero for all values of less than
gt - Fxw) ==y - P/4, whereP is the period of small-amplitude oscillations
aboutx=0, and for all values ofy greater than the critical
The eigenvalues of(F, ,F,)/d(x,v) are damping factory. for small amplitude motion. In doing so,
we indirectly demonstrate a much stronger result than that
% y> 9V given in Sec. IV B, concerning the sign of the Lyapunov
Ne=— Ei 7 e exponents: viz., that the exponents are negative at all tem-

peratures for values of less thanP/4 and for values ofy

In the limit y>\[3°V/ox7, one right eigenvector of 9reater than the critical damping factgg= 8.
a(F,,F,)3(x,v) is approximately aligned with the axis The key analytic result which enables us to derive these
and the other is approximately along the directfdny] in results is a type of “no-folding” theorem, which states that,

the (x,v) phase space. The eigenvalue associated with the 91Ven @ sequence of velocity impulséi ) for stop-start
axis is small, and is approximately motion or {Sv} for damped motiop the mappingx(0)
—X(t) has positive derivativedx(t)/dx(0) for all t>0

1 62V when 7<P/4 or y>1v.. Thus, the mapping(0)—x(t) is
Np~— ; K always invertible. For damped motion, this result applies to

all constant initial velocity slices. This means that the time
evolution of a line of initial conditions never “folds” the
fine on top of itself. The importance of folding for the onset
of chaos in bounded systems is well knoj&2]. Since the
1 52V stop-start motion is one dimensional, invertibility of the map
A~—y+ = —. immediately implies that the motion is nonchadti3]. In
Y 9x the case of damped motion, we can also show that the mo-
) ) tion is nonchaotic fory<<y., but this requires some addi-
Because the right eigenvectors &, ,F,)/d(x,v) are ap-  tional mathematical details, which we defer to the Appendix.
proximately'indep('andent of time, the Lygpunov exponents of |f the mapping x(0)—x(t) has a positive derivative
the Langevin motion are equal to the time average.of  qx(t)/dx(0) for all x(0) andt (and hence is invertib)ethen
(The presence of random impulsés in Langevin motion it follows that there is exactly one bredke., exactly one
does not affect the stretching and contraction of phase-spaggstable trajectonyand the fractal dimension of the set of
areas since eachv gives a simple shift to all phase-space preaks is zero. To prove this, we note that in the nonchaotic
points: [x,v]—[X,v+év].) Thus, in the limit y  regime, all stable trajectories converge at large times to tra-
>/[9°VI9x?| for all x, the larger average Lyapunov expo- jectoriesx(t) which differ from each other by an integer.
nent is given by Thus, if x4(t) and x,(t) are typical trajectoriesx,(t)
5 —X41(t)—n, an integer, at—o. Now consider the evolu-
Ao )m_l IV (14) tion of the line segmenf0,1] of initial values of x. If
1y P X1(0)=0 andx,(0)=1, thenx,(t) —x;(t)=1 for all t>0.

The other eigenvalue is large and negative, and is approx
mately
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Sincedx(t)/dx(0) is always positive, it follows that,(t) —P/4 and + P/4. This contradicts the comparison theorem
<X(t)<xy(t) for all t>0, if 0<x(0)<1. Thus, eithex(t) [24], which states that, sinde(t) <K,,.for all t, there is at
—X1(t) or x(t)—x,(t)=x;(t)+ 1, ast—w. In the first case least one zero of the solution of EQL6) between any two
[viz. x(t)—x4(t)], thenx’(t)—x,(t), for all x’(0) with 0  zeros of a solution of Eq.11). Hence, there are no zeros of
<x'(0)<x(0). In the second casgviz. x(t)—x,(t)+1], f(t) in the interval O<t<P/4.
thenx’(t)—x4(t)+1, for all x’(0) with 1>x'(0)>x(0). Thus, f is always positive forr<P/4, and the mapping
From this we see that the line of initial conditions breaksx(0)—x(7) is invertible. Hence, ifr<P/4, the mapping
in two at some poinky,: all points greater thar, converge x(n7—7)—x(n7) is always invertiblgregardless of ), the
to x,(t) and all points less thar, converge tox,(t). The evolution of the system is nonchaotic, and exactly one tra-
point x(0)=x, is then the initial point of the only unstable jectory is unstable for any set of velociti¢s; ,v,,...}. The
trajectory. The location ok, is determined by the specific same result is shown in the Appendix for constant initial
sequence of values chosen for the driving impulses of theelocity slices in the Langevin motion with> ..
thermal environment. We note that at zero temperakyre Conversely, for damped motion or stop-start motiony if
=1/2, corresponding to the point of unstable equilibrium ofis less than critical damping for harmonic motion er
the pendulum. > P/4, respectively, the fractal dimension of the break struc-
Because of the ergodicity of the Brownian motion, almostture is greater than zero. This follows from the fact that the
all initial conditions lead to trajectories with the same aver-map is not invertible neax(0)=0 for small velocity and
age Lyapunov exponent. Thus, eitHeix(t)/dx(0)|— or  folding of the region neak=0 occurs. Because of the er-
|dx(t)/dx(0)|—0 ast—c for almost allx(0). However, godicity of the thermal motion, this means folding is possible

since (at large timey near any pointx and multiple breaks will
L dx(t) occur in the graph ok(t—«) versusx(0) if a break is
X _ created in a region after it has been folded on itg&lfimeri-

o dx(0) dx(0)=1for all t>0, (15 cally, we find that this is the common mechanism for forma-

tion of multiple breakg.Once multiple breaks are possible, it
only the second optiorjdx(t)/dx(0)|—0 ast—c, can oc- immediately follows from the statistical homogeneity of the
cur whendx(t)/dx(0)>0 for all x(0). Thus, it immediately motion in time that the fractal dimension of the break struc-
follows that stop-start motion is nonchaotic if the derivativeture is greater than zero.
dx(t)/dx(0) is always positive. The corresponding result is Near the transition to chaotic behavior, the average
proven for Langevin motion in the Appendix. Lyapunov exponent over an infinitely long walk is approxi-
We now demonstrate that for stop-start motion the mapmately zero. In this regime, two poirntg andx, may remain
ping x(0)—x(t) (for any given realizatioduv,} of the ther-  very close for very long periods of time when the average
mal velocitie$ has positive derivativé(t) =dx(t)/dx(0) if Lyapunov exponent is negative over that time interval and
the timer is less tharP/4. It suffices to show this result for yet subsequent positive fluctuations in the Lyapunov expo-
the first steg= 7 only, since all subsequent steps are equiva-nent can lead to a break forming betwegrandx,. Thus, in
lent and the derivativex(n7)/dx(0) is the product of th@  the nonchaotic regime near the transition to the chaotic re-
derivativesdx(m7)/dx((m—1)7), form=1,... n. gime, the fractal dimension of breaks tends to 1 as the prob-
It was shown in Sec. IV A that the derivatifét) satisfies ability of a break evolving in any given interval
Eg. (11) during the time interval &t<r. The initial condi-  [X1(0),x>(0)] at some stage of an infinitely long walk tends
tions aref =1 anddf/dt=0 att=0. Note that the condition, to one. On the chaotic side of the transition, the concept of a
df/dt=0, corresponds to the fact that all trajectories are‘break” strictly can not be defined in the infinite-time limit
given the same velocitgdx/dt=v,, at the start of each step. since any exponential convergence of two poisand x,
AlthoughK (t) depends on the random trajectory followed, it must be overcome at a later stage by an exponential diver-
is always less than the maximum curvature of the potentialgence. However, because the probability distributiorx pf
K max= 27, Which occurs whem(t)=0. —X, is very strongly peaked near 0 when the average
To show that the solution of Eq11) is always positive Lyapunov exponent is approximately zefbut positive
for t<P/4, we use the standard comparison theor¢pag [3,6], a remanent of break formation can be observed even
for linear second-order ordinary differential equations, takingfor large simulation times for small positive Lyapunov expo-
the equation nents.
As a final point relating to the fractal structure of breaks
d’z and its relationship to the Lyapunov exponent, we observe
az KmaZ (16) that, for stop-start motion, the derivative

for comparison with Eq(11). For the purposes of this dem- dx

onstration, we consider EqL1) to be analytically continued dr = at 7=P/4.

[25] to the interval— 7<t<0, taking K(—t)=K(t) for O

<t<r. Then, sincedf/dt=0 at t=0, it follows that This follows from consideration of the integrand in the ex-
f(—t)=f(t) for the analytic continuation of the solution of pression for\(7), given in Eq.(8). The term

Eq. (12). If f(t) were zero for any value dfe (0,P/4), then

there would be at least two zeros of the analytically contin- IX(7)

uedf in the interval— P/4<t<P/4. However, the function f(X’U;T):ax(O) )

cos(yKmat), which satisfies Eq(16), has no zeros between i
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has a local minimum ax=0, v =0) for each fixed value of type for the analysis of these effects, many of the results
7<P/4. As ris increased from zerd(0,0;7) decreases from obtained above can be extended to arbitrary bounded one-
1to O, crossing =0 for the first time atr=P/4. Any two-  dimensional systems. It is clear that the maximum curvature
dimensional integral of the form in Eq8) will have an K, is the crucial aspect of the potential which ensures that
infinite negative derivative inr when the termf(x,v;7) in  no folding occurs for either stop-start or damped motion.
the log first crosses zero. Thus, the transition from fractallhis maximum curvature occurs at the point of stable equi-
dimensiond=0 to d>0 for the structure of breaks is asso- librium for the pendulum(i.e., the pendulum potential has
ciated with an infinite negative derivative of the Lyapunov “soft” anharmonicity). This is not true for a general poten-
exponent\ as a function of the environmental coupling tial. We see from the details of the proofs given for the
This is seen quite clearly in the numerical results shown irpendulum that it is the maximum curvature of the potential,
Fig. 1(b). rather than the curvature at the stable equilibrium, which in
general determines critical values of=2K.x and 7
=27/JKnax FOr environmental coupling greater than these
critical values ofy or 1/r, the system is nonchaotic at all

The striking similarity of the results for stop-start motion temperatures.
and Langevin motion, despite the difference between their In conclusion, we have shown that for a pendulum
formal representation, can be traced to the fact that the ratigoupled to a thermal environment, the precursor of chaos in
of the two Lyapunov exponents for damped motionthe nonchaotic regime is the existence of a fractal set of
A (Y)IN_(y)=\.(y)]y is usually small, except fory  unstable trajectories for each noise realization. The fractal
< v, in the low-temperature, harmonic limit. This means thatStructure of this set is associated with the folding and stretch-
for Langevin motion the velocity difference of two nearby ing action of the phase-space dynamics. The dimension of
trajectories decays much more rapidly than the position difthis set is zerd(i.e., exactly one trajectory is unstapler
ference and the phase space is effectively one-dimension&oupling larger than a critical value in two distinct types of
as it is for stop-start motion. Moreover, on the time-scalecoupling to the environment, damped motion and stop-start
defined by 1. (y), which determines the convergence of motion. The range of values of the environmental coupling
positions in Langevin motion, the time between collisions infor which the fractal dimension is zefand exactly one tra-
stop-start motion withr=2/y is small, so that the difference jectory is unstable does not depend on temperature and
between continuoué_angevin damping and suddefstop- ~ bears a strikingly simple relation to elementary characteristic
starh damping at intervals of is not qualitatively important. ~constants of themall-amplitudemotion about equilibrium:

The analysis of the nonchaotic regime of motion for bothfor damped motion, the fractal dimension is zero for all
stop-start and Langevin motion of the simple pendulum redamping ratesy greater than the usual critical damping for
veals that the essential precursor of chaos in this regime igmall amplitude oscillations; for stop-start motion, the fractal
the existence of a set of unstable trajectories. Although theséimension is zero for all stop-start timesless thanP/4,
trajectories are exceptional and have no statistical weight ivhere P is the period of small amplitude oscillations. For
the “typical” response of the system to the driving by its €nvironmental coupling greater than these values, no folding
thermal environment, they are, nevertheless, highly signifioccurs and the motion is nonchaotic at all temperatures. For
cant. Although the particular set of points that lead to un-environmental coupling less than these critical values, the
stable trajectories depends on the specific realization of théactal dimension of the set of initial points of the unstable
thermal noise, its fractal dimension can be characterized in Hajectories grows until it equals 1 at the transition to the
statistical sense and the onset of chaos from the nonchaotf®aotic regime. The similarities between damped motion
regime can be associated with the growth of the fractal diwith damping coefficienty and stop-start motion withr
mension from zero to one. =2/y, in terms of the fractal structure and also of the largest

This fractal structure is strongly associated with the fold-Lyapunov exponent, have been investigated numerically and
ing action of the phase-space dynamics of the system driveanalytically. These results have corresponding generaliza-
by thermal forces. We have seen that when no folding octions for arbitrary bounded one-dimensional systems.
curs, for each choice of the sequence of environmental driv-
ing forces, there is only one initial value &fleading to an
unstable trajectory and the system is nonchaotic. The basin
boundaries are then simple.

Each basin of attraction corresponds to initial conditions \we first demonstrate that for damped motion the mapping
!eadmg to final trajec;tories with the same integral part(pf x(0)—x(t) (for a given noise realizatiofdv}) has positive
in terms of the physical pendulum motion, these basins corgerivativedx(t)/dx(0) on each constant initial velocity slice
respond to trajectories which have the same winding numbe{ynen the damping coefficient>y., so that small ampli-
As folding and stretching become more effective, and thgyde motion is overdamped. We then further demonstrate
fractal dimension of the basin boundaries grows, the basingat in this case, the motion is nonchaotic.
of attraction for different winding numbers become infil-  Fqr reference later in the discussion, we consider the time

trated into one another. It then takes a longer and longer timgy,o|ytion of a more general curve of initial conditions, speci-
for the final winding number of a particular initial condition fieq py

to be determined. As the transition to chaos is approached, it
takes an infinite time for the winding number to be decided.
Although the pendulum has provided a very useful proto- X(0)=¢, v(0)=vy(&) for O<é<. (A2)

V. DISCUSSION AND CONCLUSIONS

APPENDIX: “NO-FOLDING” THEOREM
FOR LANGEVIN MOTION
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The constant initial velocity slices are a particular case ofat that value of.

this type of curve of initial conditions, where (&)
=constant. We define

dx(t) B ax(t)
dé  ax(0)

dug ax(t)
[TdE w(0)

f(&n)= (A2)

‘U(O x(0)

We now apply this result to the constant velocity slices,
for which dvy/dé=0. These slices of initial conditions
clearly satisfy Eq.(A6) for all & We now have that
dx(7)/dx(0)=dx(7)/dé>0, which was the “no-folding”
condition we wished to demonstrate. Moreover, along any
constant velocity slice, Eq15) is valid. This then leads to

By considering the equations of motion for two trajectoriesthe conclusion that, for almost all initial conditions

with initial conditions along the curvéAl), we find the ana-
log of Eq.(11) for the Langevin motion:

d?f
de?

df
—K(t)f,

Y a@ (A3)

whereK (t) =d?V/dx? atx=x(t), with the initial conditions
f=1 anddf/dt=dvy/d¢ at t=0. The functionK(t) de-
pends on the random trajectoxt). However,K(t) is never
larger than the maximum curvatukg,,,=d?V/dx’ of the po-
tential, which occurs at=0.

Defining the function

g(&t) =exgd y/2]f (&),
we see thag satisfies the equation

dzg_
dtz

'}’2

7 K(t)

9, (A4)

with initial conditionsg=1 anddg/dt=dvy/dé+ y/2 att
=0.

For all values ofy>1y,, the term[y?/4—K(t)] in Eq.
(A4) is always positive. Hence, fj=1 anddg/dt=0 att
=0, g(t) must be positive for alt>0. To demonstrate this,
suppose on the contrary thgft) =0 for somet>0. Assume
that the first such zero @ is att=t;. Theng(t)>0 for all
te[0t;]. Also,dg/dt<0 fort=t,;. However,

dg dg ftl d’g

= =2 4| S dt

atl,_, " dtl,_, Jo dt
dg

gdt. (A5)

T dt

ty '}/2
t0+f0 [Z_K(t)

This is clearly a contradiction; the left-hand side of E&5)

oX(t)
dx(0)

—0 ast—oo,
(0)

(A7)

i.e., the final position is not sensitive to the initial position
when y> ..

By considering a curve of initial conditions with
dvy/dé=—v/2, we see that

ox(t)
ax(0)

Y ax(t)

(A8)

v(0)

for all initial conditions. Similarly, considering a curve of
initial conditions withdvy/dé= /2, we see that

oX(t)
dx(0)

ox(t)
dv(0)

(A9)

Y
2

v(0) x(0)

Combining Eqs(A8) and(A9), we find the general result for
Langevin motion:

IX(t)
ax(0)

IX(t)
dv(0)

4 , (A10)

x(0)

v(0) 2

for all initial conditions wheny> .. From Egs.(A7) and
(A10), it follows that

aX(t)
Jv(0)

—0 ast—oo,
X(0)

(A11)

for almost all initial conditions whery> vy, .
Equations(A7) and (A11) express the fact that the final

is negative but the first term on the right-hand side is asposition x(t) is insensitive to the initial positiox(0) and
sumed to be non-negative and the second term is the integre¢locity v (0), respectively. Differentiating these two equa-

of a positive quantity.

tions with respect td demonstrates that the final velocity

Thus, we obtain the following result for Langevin motion v (t) is also insensitive to the initial position and velocity.

when y>vy.=2JKax for each value of¢, the function
f(&;t)>0 for all t>0 if the curve of initial conditions satis-
fies

dUO

(AB)

This completes the proof that the final phase-space coordi-
nates, given a particular realization of thermal impulsés}

in Langevin motion, are insensitive to the initial conditions
for almost all trajectories when the damping factor y. .
Thus, the Langevin motion is nonchaotic at arbitrary tem-
peratures for ally> vy, .
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