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Onset of chaos in a pendulum coupled to a thermal environment

S. Fahy, S. Twohig, M. Stefansson, and D. Courtney
Department of Physics, University College, Cork, Ireland

~Received 16 October 1997!

We consider the onset of chaos in a pendulum driven by a Brownian noise environment. The behavior of the
Lyapunov exponents of the system as a function of the strength of the coupling to the thermal environment is
investigated for two models of thermal coupling~given by the Langevin equation and by random stop-start
motion!. For sufficiently strong coupling to the environment, the motion is nonchaotic and almost all trajec-
tories are stable but, for each initial velocity and realization of the Brownian noise, an exceptional set of
unstable trajectories exists, in analogy to the existence of basin boundaries in deterministically driven systems.
The initial points of the unstable trajectories form a fractal set, the dimension of which is zero for coupling to
the environment greater than a~temperature-independent! critical value, grows as the environmental coupling
is decreased, and equals one at the transition to chaotic behavior.@S1063-651X~98!08403-7#

PACS number~s!: 05.45.1b, 05.40.1j, 02.50.Ey
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I. INTRODUCTION

In this paper, we analyze the dynamical behavior o
simple pendulum, the motion of which is driven by Brow
ian forces only. In particular, we will be concerned with t
onset of chaos in such a system. The study of chaotic be
ior in a variety of randomly driven systems has recently
tracted some interest, motivated both by the aim of a dee
understanding of Brownian motion and also by an interes
the synchronization effects of a common source of exte
noise on a pair of~coupled or uncoupled! dynamical systems
@1–13#. The study of such problems lies between the tra
tional domains of statistical mechanics and nonlinear dyn
ics. The simple pendulum is one of the most important p
totypes of nonlinear motion in classical mechanics and
natural candidate for study as a randomly driven system

The presence or absence of chaos in randomly driven
tems may be phrased in terms of the question: given
uncoupled dynamical systems subjected to a common e
nal random driving force~a common ‘‘thermal environ-
ment’’!, to what extent are their final states similar? Equiv
lently, one may ask the question: for a specific history of
thermal environment~i.e., a specific realization of the ran
dom external forces!, is the final condition of the system a
large times sensitive to its initial condition or is it determin
solely by the history of the environment? A system sensit
to its initial condition is said to be chaotic; a system det
mined solely by its environment is nonchaotic.

Both in the general case of dynamical systems with r
domly varying parameters@3,6# and, in the specific case o
Brownian motion@4#, these questions have been addres
previously in terms of the expected Lyapunov expon
along a typical trajectory of the system and in terms of
termittent bursting of snapshot attractors@3# in the chaotic
regime. It has been shown@4,8# that, in the limit of very
strong coupling to the environment, the motion of the syst
at large times is determined entirely by the noise and is
dependent of the initial state of the system. For sufficien
weak coupling to the environment, the state of motion of
system at large times is sensitive to its initial condition and
not determined solely by the realization of environmen
noise. However, to our knowledge, it has not been direc
571063-651X/98/57~3!/2799~12!/$15.00
a

v-
-
er
n
al

i-
-
-
a

s-
o
r-

-
e

e
-

-

d
t
-

-
y
e
s
l
y

explored how the dynamics of a randomly driven syst
evolves towards chaos within the nonchaotic regime, a
system control parameter~e.g., the coupling to the environ
ment! is varied. Specifically, to what extent can one ident
precursors of chaotic behaviorin the nonchaotic regimefor a
randomly driven system?

From the point of view of conventional nonlinear dynam
ics, one is faced with a number of difficulties in studying
randomly driven system:~1! The perturbation due to the
thermal environment is not a ‘‘small’’ addition to a regula
deterministic driving force—in fact, the thermal noise is t
only stimulus of motion and, without it, the system remai
static at a point of stable equilibrium. Thus, analysis of t
dynamics of the unperturbed, deterministic system gives l
ited insight into the behavior of the noisy system.~2! in
contrast to well-defined phase-space structures such a
tractors, basins of attraction, and separatrices, which serv
classify the asymptotic trajectories of deterministic system
the phase-space dynamics of a thermally driven system
apparently quite featureless; the motion is usually ergo
and the asymptotic occupation of the phase space can
characterized entirely by the Boltzmann distribution for t
appropriate temperature.~3! Because noise is dominant i
the dynamics, analysis in terms of return maps yields f
tureless and uninformative results.~4! In the understanding
of routes to chaos, phenomena such as period doublin
intermittency cannot be expected since the driver of the s
tem ~i.e., the thermal environment to which the system
coupled! has a complex, random behavior, which is specifi
only in statistical terms and in which no periodic behavior
evident.

A satisfactory approach to the analysis of chaos in r
domly driven systems, which partially overcomes some
the difficulty in addressing items~1! and~2! of the previous
paragraph, involves the use of what we may call ‘‘spec
realizations’’ of the thermal environment@1,3,4#. In practice,
by this we mean that aspecificsequence of random force
~or impulses! is chosen from the appropriate distribution f
the thermal environment, specifying the exact values of
thermal forces over a sufficiently long-time interval. On
this is done, we now have a deterministic problem, albeit o
with a highly complex sequence of driving impulses. T
2799 © 1998 The American Physical Society
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2800 57S. FAHY, S. TWOHIG, M. STEFANSSON, AND D. COURTNEY
behavior of the system subjected to this specific realiza
of the thermal environment is then analysed~e.g., the time-
averaged Lyapunov exponents may be calculated or sep
trices may be identified, as discussed below!. In order to
obtain statistically relevant properties, this entire analy
~i.e., choice of specific sequence of random forces ove
long-time interval, followed by analysis of the resultin
driven system! must be repeated many times and the app
priate average over the driven systems obtained.~For some
properties, e.g., the Lyapunov exponents, time averagin
equivalent to ensemble averaging and a single long-time
alization of the thermal forces is sufficient to give the app
priate averages.! This approach may thought of as applying
‘‘common noise’’ signal to an ensemble of systems, ea
member of the ensemble having a different set of initial c
ditions. Indeed, an important physical application of t
analysis of chaos in randomly driven systems is to the
derstanding of synchronization of uncoupled systems
fected by common noise signals.

The behavior of the simple pendulum subjected to a si
soidal driving force has been well studied@12# and displays
rich, well-defined phase-space structures, e.g., basins o
traction, with their associated attractors and separatrice
system driven by Brownian forces can be classified@4,8,10#
as chaotic or nonchaotic, depending on whether its larg
~average! Lyapunov exponent is positive or negative, resp
tively, in a very similar way to the deterministically drive
systems. However, it is of interest to know whether any a
logs of the phase-space structures present for the sim
sinusoidally driven pendulum are also present for the pen
lum driven by Brownian forces, and whether such structu
evolve in a systematic way as the control parameters~e.g.,
the strength of coupling to the environment! are changed. In
this paper, we concentrate principally on the behavior of
pendulum driven by Brownian forces in the nonchaotic
gime. Despite the difficulties in analyzing phase-space st
tures for randomly driven systems that we cited above,
will demonstrate the existence of structures that are an
gous to the boundaries~or separatrices! between basins o
attraction in the sinusoidally driven pendulum, and quan
the changes in those structures as the coupling to the e
ronment decreases and the system evolves towards cha

The remaining sections of this paper are organized as
lows: In Sec. II, we consider the motion of a particle of ma
m, confined to move in one dimension, coupled to a therm
environment consisting of a gas of particles of massm8. This
provides a physical model of one-dimensional Brownian m
tion @10#. Two limiting cases of this physical model wi
subsequently be used in the analysis of Brownian motion
the simple pendulum. Numerical results obtained from sim
lations of Brownian motion of the pendulum are presented
Sec. III and some relevant analytic results are proven in S
IV. The overall conclusions of this study are discussed
Sec. V.

II. PHYSICAL MODEL OF THERMAL MOTION

In this section we consider a simple, microscopic m
chanical model of Brownian motion in one dimension. T
properties of this model have been investigated in detai
Ref. @10# and we give only a survey of relevant properti
n
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here. Brownian motion is usually modeled using the Lan
vin equation@13,14#, in which the particle is considered to b
moving in a viscous medium, with a viscous force propo
tional to velocity, while subjected to random impulses fro
the microscopic thermal motion of the medium. Althoug
this is the standard mathematical representation of Brown
motion, it is not an explicit, fully microscopic mechanic
model of the physical motion since, at the microscopic lev
all collisions with the particles of the medium are elastic a
viscous damping merely represents the time-averaged tr
fer of momentum from the particle under consideration
other particles in the system.

As we will see in this section, the Langevin equation is
no means the only valid mathematical representation of
physical process of Brownian motion. The physical mod
we introduce below includes the Langevin equation as a s
cial limiting case. It also includes the other mathemati
model of thermal coupling~so-called stop-start motion
@4,15#!, which we will find convenient to use in our subs
quent analysis of chaotic behavior in the pendulum coup
to a thermal environment. Indeed, there is a wide range
physically valid mathematical models of Brownian motio
It is important, therefore, that the qualitative physical resu
one obtains in the mathematical analysis of the mot
should not depend on the specific mathematical mode
Brownian motion chosen.

The physical model of thermal coupling@10# is as fol-
lows: We consider a particle of massm moving in one di-
mension, colliding intermittently with the particles of a su
rounding gas, each of massm8. We assume that the
distribution of velocities of the particlesm8 is Maxwellian,
so that their mean velocitŷv8&50 and m8^(v8)2&5kBT,
whereT is the absolute temperature of the system,kB is the
Boltzmann constant, and̂X& represents the thermal averag
of a quantityX. Consider a single elastic collision betwee
the particle of massm, with velocity v1 before the collision,
and one of the other particlesm8, with velocity v18 . An
elementary calculation, using conservation of energy a
momentum, shows that the velocityv2 of the particle of
massm after the collision is given by

v25
m2m8

m1m8
v11

2m8

m1m8
v18 . ~1!

After n collisions~in the absence of other forces on the pa
ticle m!, its velocityvn11 is given by

vn115Fm2m8

m1m8G
n

v11
2m8

m1m8 (
j 51

n Fm2m8

m1m8G
n2 j

v j8 ,

wherev j8 is the velocity of the particle of massm8 in the j th
collision.

Assuming thev j8 are independent and identically distrib
uted ~with mean zero and variancekBT/m8! it then follows
from the central limit theorem that, asn→`, vn has a
Gaussian distribution withm^(vn)2&5kBT. This is as one
would expect on general thermodynamic grounds, since
particle of massm is a classical system in thermal conta
~via the collision process! with a reservoir~the collection of
particles of massm8! at temperatureT. Indeed, this genera
thermodynamic argument shows that, if the particle of m
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57 2801ONSET OF CHAOS IN A PENDULUM COUPLED TOA . . .
m experiences an additional force2]V/]x due to an exter-
nal potentialV(x), wherex is the position of the particlem,
the probability distribution ofx at large times is given by the
Boltzmann distribution exp@2V(x)/kBT#/Z, where the parti-
tion function Z5*exp@2V(x)/kBT#dx. Thus, the asymptotic
distribution of position and velocity of the particlem de-
pends only onT and does not depend on the strength of
coupling to its surrounding environment. This couplin
strength is determined by the massm8 of the particles in the
environment and the average rate at which the particlem
collides with them. Nevertheless, as we shall see in Secs
and IV below, the strength of the coupling of the particlem
to its thermal environment does affect the sensitivity of
particle’s actual final trajectory to its initial position, given
specific realization of the thermal environment~i.e., a spe-
cific sequence of velocities$v i8%!.

In order to obtain the standard Langevin equation fr
the equations of motion defined by Eq.~1!, we assume tha
the massm8 is much less thanm and that the timeDt be-
tween collisions is small. The viscous drag is then prop
tional to the ratiom8/Dt. From Eq. ~1! we see that the
change in velocity ofm in a single collision is given by

Dv5
2m8

m1m8
~v82v !,

wherev is the its initial velocity andv8 is the velocity of the
particle with which it collides. Taking the limit,m8→0 and
Dt→0, keeping

m8

Dt
5

mg

2
, ~2!

whereg is a constant, we obtain the Langevin equation@14#,

dv
dt

52gv1h~ t !, ~3!

where h(t) is Brownian white noise with^h(t)h(t8)&
52gkBTd(t2t8)/m. If the particlem experiences an addi
tional conservative force from an external potentialV(x),
Eq. ~3! becomes

d2x

dt2
52

1

m

]V

]x
2g

dx

dt
1h~ t !. ~4!

Another useful and natural limit of Eq.~1! occurs when
m85m, i.e., when the particles of the surrounding mediu
have the same mass as the particlem. In this case the par
ticles m andm8 exchange velocities in each collision. Co
sidering only the motion ofm, we then obtain the so-calle
stop-start Brownian motion@4,15#, where the velocity ofm is
reset at thenth collision and replaced with a velocityvn11 ,
chosen at random from a Maxwell distribution at tempe
ture T. In the simulation of this type of motion, below, w
make the further assumption that the collisions occur at re
lar intervals ofDt5t. In this motion, no damping is explic
itly introduced and the particlem moves conservatively in
the potentialV(x) in the intervals between collisions. Th
form of motion has been used in the Monte Carlo sampl
s
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of auxiliary fields in lattice gauge theories@15# and other
interacting lattice fermion problems@16#.

In the analysis of the chaotic behavior of the pendulu
coupled to a thermal environment, stop-start motion pro
to be somewhat more formally simple than Langevin motio
In stop-start motion, the phase space of the pendulum mo
can be taken to be one dimensional, as follows: The ini
velocity vn for the nth step~i.e., the time interval between
then21 collision and thenth collision! is chosen at random
from a Maxwell velocity distribution for temperatureT. The
nth step is then a mappingx(t5nt2t)→x(t5nt) pro-
duced by integrating Newton’s equations of motion for t
~undamped! pendulum motion with initial velocitydx/dt
5vn . Thus, the phase space for the motion is one dim
sional because the state of the system~i.e., the pendulum! is
specified byx(nt) alone and the velocitiesvn play the role
of parameters of the environmental driver, rather than pha
space coordinates of the driven system. We may then v
the evolution of the system fromt50 to t5nt as a product
of n randomly chosen mappings of the circle onto itself.

On the other hand, the phase space of the Langevin
tion of the pendulum is two dimensional, with phase spa
coordinatesx(t) and v(t)5dx/dt, as is the case for the
usual damped simple pendulum@12#. The evolution of the
system from its initial state@x(t50), v(t50)# to its final
state@x(t), v(t)# is specified by Eq.~4!, once a particular
~random! choice of the forcing termh(t8) for 0<t8<t has
been made. Although the damped system is two dimensio
we will find it convenient to consider the evolution of th
constant velocity slices of initial conditions, specified b
dx/dt5constant att50. All such slices are equivalent~as-
suming ergodicity of the motion! for the topological consid-
erations below and this approach emphasizes the esse
similarity to stop-start motion. Thus, when we refer to
particular ‘‘noise realization’’ for the damped motion, w
assume that the initial velocity slice has been specified~with
velocity chosen from a Maxwell distribution! along with the
realization of the forcing term,h(t8) for 0<t8<t.

Although Langevin motion and stop-start motion appe
quite different in their detailed implementation of the the
mal coupling, many of the results that are obtained from e
are remarkably similar, if the stop-start coupling with inte
val t between collisions is compared with the Langevin co
pling with viscous coefficientg52/t. This relation between
t and g is obtained from Eq.~2!, by settingm5m8 and t
5Dt. We will discuss this relation further in Sec. IV, below
The fact that the coupling to the environment is intermitte
and abrupt in the stop-start motion while it is continuous
the Langevin motion has a relatively minor effect on t
results, particularly at higher temperatures. The numer
results in Sec. III and the analytical results in Sec. IV a
strikingly similar in every regard for both forms of motion
For this reason, it would seem that the qualitative nature
the results below have much wider applicability than to t
two models explicitly analyzed and it is likely that an
physically sensible coupling of the pendulum to a therm
reservoir would reveal qualitatively similar behavior.

III. NUMERICAL RESULTS

We have performed numerical simulations of both t
Langevin and the stop-start models of Brownian motion
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2802 57S. FAHY, S. TWOHIG, M. STEFANSSON, AND D. COURTNEY
the simple pendulum. In the presentation that follows, we
the massm51 and use the variablex5u/2p, whereu is the
angle of the pendulum to the downward vertical. The pot
tial V(x)52cos@2px#/2p, so thatV has a period of 1 in the
variablex.

For stop-start motion, the equation of motion during ea
step~i.e., between consecutive collisions! is that for free mo-
tion of the pendulum:d2x/dt252sin @2px#. Numerical inte-
gration was performed by the standard ‘‘leap-frog’’ meth
@15#. A leap-frog integration time step of approximately 0.
was found to give well-converged results for the integrat
of the equations of motion. The sequence of initial Gauss
velocitiesvn ~with variancekBT! for each step was generate
by a Box-Muller transformation of uniform pseudorando
numbers generated by a double~64-bit! precision floating
point version of the subroutine ‘‘RAN3’’ given in Ref.@17#,
which is based on the subtractive pseudorandom num
generator of Knuth@18#. The coordinatex was represented in
machine quadruple~128-bit! precision for the analysis of th
fractal structure of ‘‘breaks’’~see below! although, for the
calculation of other quantities, double precision is sufficie
In stop-start motion, the specific realization of the enviro
ment is determined by the sequence of random veloc
$vn%, which is determined by the initial seed of the pseud
random number generator.

For the damped motion, the Langevin equation, Eq.~4!, is
numerically integrated using the following modification
the leap-frog method, which explicitly includes damping. L
s be the integration time step. Given the positionx(t) and
velocity v(t) at time t, the positionx(t1s) and velocity
v(t1s) at time t1s are generated as follows: A rando
impulse, dv5A2gskBTz, where z is a Gaussian random
variable with unit variance, is applied to the velocity at tim
t: i.e., v(t1)5v(t2)1dv. The velocity at the time
t1(s/2) is then found by analytically integrating

dv
dt8

5F2gv~ t8! ~5!

over the intervalt,t8,t1(s/2), taking F52]V/]x at x
5x(t) to be constant over this interval. This gives

v~ t1s/2!5exp@2gs/2#v~ t1!2
12exp@2gs/2#

g

]V

]xU
x5x~ t !

.

The position at timet1s is then

x~ t1s!5x~ t !1sv~ t1s/2!, ~6!

and the velocity at timet1s2 ~just before the next velocity
impulse! is found by integrating Eq.~5! over the intervalt
1s/2,t8,t1s, taking F52]V/]x, at x5x(t1s) from
Eq. ~6!, to be constant over this interval, so that

v~ t1s2!5exp@2gs/2#v~ t1s/2!

2
12exp@2gs/2#

g

]v
]xU

x5x~ t1s!

.
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This completes the integration of the damped equations
motion over the integration time step@ t,t1s#. In the limit,
g→0, this procedure reduces to the usual leap-frog integ
tion method.

In the Langevin implementation of the thermal coupling
the specific realization of the environment is determined
the sequence of velocity impulses$dv% applied at timest
5s,2s,3s,... which, as in the case of stop-start motion,
determined by the initial seed of the pseudorandom num
generator. As mentioned in Sec. II, the initial velocity slic
v(t50) for Langevin motion was chosen from a Maxwe
distribution. For each value of the damping coefficientg the
integration time steps used was 0.1/g. ~Some integrations
were carried out with a time steps of 0.05/g, with negligible
change in results.!

A. Average Lyapunov exponents

Shown in Fig. 1 is the Lyapunov exponent versus inver
environmental coupling, numerically calculated for bot
types of motion at various environment temperatures. For
damped motion, the larger Lyapunov exponent@19# ~shown!
was calculated from the ensemble average,

l15
1

t2t0
E

0

1

dxE
2`

1`

dv K lnH uDx~ t !u
uDx~ t0!uJ L

dv

P@x,v#, ~7!

by integrating the equation of motion, Eq.~4!, for initial
values,

FIG. 1. The Lyapunov exponentl1 of the thermally driven pen-
dulum as a function of inverse environmental coupling strength,~a!
1/g for damped motion, and~b! t for stop-start motion, at tempera-
tureskBT50.1, 0.5, and 1. In~a! l1 is the larger Lyapunov expo-
nent; in ~b! there is only one exponent.
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57 2803ONSET OF CHAOS IN A PENDULUM COUPLED TOA . . .
@x1~ t50!,v1~ t50!#5@x2j/2,v# and

@x2~ t50!,v2~ t50!#5@x1j/2,v#,

wherej51024. On each integration time step, the impul
dv given to v1 was the same as that given tov2 . The dif-
ference Dx(t8) is equal to @x2(t8)2x1(t8),v2(t8)
2v1(t8)#. For each value of (x,v), ^ ln$uDx(t)u/uDx(t0)u%&dv
denotes the average value of ln$uDx(t)u/uDx(t0)u% from 4 statis-
tically independent realizations of the noise sequence$dv%
over the time interval@0,t#. Each integration was carried ou
for a total time of t5100/g and t054/g. If the distance
uDx(t8)u became greater than 1024 or less than 10210 at any
time t8, it was rescaled to equal 1027 and the rescaling fac
tor accounted for in the calculation ofl1 . The asymptotic
distribution P@x,v# of the positions and velocities is give
by the Boltzmann distribution,

P@x,v#5
exp@2~V~x!1v2/2!/kBT#

A2pkBT*0
1 exp@2V~x!/kBT#dx

.

For the stop-start motion, the phase space of the syste
one dimensional and the Lyapunov exponent shown in Fi
was found by evaluation of the ensemble average,

l5
1

t E
0

1

dx~0!E
2`

1`

dv lnFU]x~t!

]x~0!
U

x~0!5v
GP@x~0!,v#,

~8!

of the length expansion factor ln@u]x(t)/]x(0)uv(0)5v# for a
single time intervalt between collisions. In this expressio
x(0) is the position at the start andx(t) is the resulting
position at the end of the time intervalt, given that the initial
velocity v(0)5v. The derivativeu]x(t)/]x(0)uv(0)5v was
found by integrating the~undamped! motion over one time
interval t for initial values,x1(t50) and x2(t50), a dis-
tance 1027 apart.

A fixed grid in x andv ~rather than a Monte Carlo sam
pling @4#! is used for the numerical evaluation of the integ
in Eqs.~7! and ~8!. The grid spacing inx is uniform on the
interval @0,1# and a nonuniform grid ofv is used, where the
spacingDv between consecutive grid values ofv is chosen
so thatDv exp@2v2/2kBT# is constant. A grid of 1003100
points was found to give very well converged values for
integrals. Particularly for large values ofg or small values of
t, this ensemble-average method of evaluatingl is more
numerically efficient than the time-average method, wh
one calculates the average scaling rate over a single,
long trajectory. We have checked, for a number of values
g, t, and T, that the values ofl obtained from ensemble
averaging are the same as those from time averaging.

The principal features ofl as a function of inverse envi
ronmental coupling strength~t or 1/g! are the presence of
deep minimum neart50.6 or 1/g50.25 and a crossing to
positive values neart51.5 or ~for higher temperatures! 1/g
50.9. The minimum is deeper for stop-start motion, partic
larly at low temperatures, for which the curve exhibits
second local minimum neart51.8. For higher temperatures
the transition to chaotic behavior occurs at larger values
the coupling to the environment~i.e., smaller inverse cou
pling strength! for both forms of motion.
is
1

l

e

e
ry
f

-

f

B. Exceptional trajectories

The above calculations, giving a negative avera
Lyapunov exponent of the system for strong coupling to
environment, predict the long-time stability oftypical trajec-
tories, given a particular realization of the thermal enviro
ment. If the largest average Lyapunov exponent of the s
tem is negative~as is the case for largeg or small t!, then
typical Brownian trajectories are stable and, hence, are
sensitive to small changes in initial conditions. Even f
large changes in initial conditions, given a particular realiz
tion of the thermal impulses~i.e., the sequence$vn% for stop-
start motion or the sequence$dv% for Langevin motion!, the
final physical trajectory at large times is found to be ind
pendent of the initial conditions of the pendulum. Howev
although this is the case foralmost all trajectories~in the
statistical sense!, it is not true for all. For each realization o
the thermal impulses, there is at least one initial condit
~and, in general, infinitely many! which gives rise to an un-
stable trajectory, for which the derivativedx(t)/dx(0)→`
as t→`. These unstable initial conditions have zero statis
cal weight and do not contribute to the average Lyapun
exponentl, but their presence is an important precursor
the onset of chaos asl→0, as we shall see in the following
analysis.

Shown in Fig. 2 is the graph of the final coordinatex(nt)
versus initial coordinatex(0) for largen, obtained with stop-
start motion using a specific, representative selection
Maxwell distributed velocitiesv1 ,v2 ,...,vn . @Qualitatively
similar results are obtained in damped motion forx(t) versus
x(0) for constant initial velocity slices.# Almost all points on
the graph have values ofx(nt), which differ only by an
integer, and correspond to the same final physical state o
pendulum. The step lengtht was chosen such that the e
pected Lyapunov exponent is negative anddx(nt)/dx(0)
→0 asn→` for almost allx(0); thus, the graph~see Fig. 2!
is flat almost everywhere. However, by including the fu
value ofx ~not just its physically relevant fractional part! we
see that the graph in Fig. 2 contains a set of ‘‘breaks’’~points

FIG. 2. Final coordinatex(nt) vs initial coordinatex(0) for
stop-start motion witht51, using a particular selection of random
velocities $v1 ,v2 ,...,vn%. The total integration time wasn5500
and the temperature waskBT51. The points on the main graph ar
for 100 equally spaced values ofx(0). Theinset shows the graph
for grid spacinge51024 near the first break in the main figure.
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at which the graph is discontinuous! which are the bound-
aries between the basins of attraction for final values ox
which differ by a nonzero integer.

The existence of at least one such break~both for stop-
start motion and for any constant initial velocity slice
damped motion! is ensured by the periodic character of t
potentialV(x): since trajectories starting atx1(0)50 and at
x2(0)51 experience identical forces throughout their m
tion, their trajectories always remain precisely one per
apart; i.e.,x2(t)2x1(t)51 for all t. This is immediately
clear from the fact that the two trajectories inx correspond to
identical trajectories of the physical system. The equival
statement in terms of the physical variableu for pendulum
motion, which has the topology of a circle, is that the no
simply-connected topology of the circleu(t50) does not
allow it to be mapped onto a single pointu(t→`) without at
least one break~point of discontinuity! occurring. In terms of
the physical variableu, there is only one basin of attraction
so that the breaks are not basin boundaries for the phy
system in the usual sense. However, the physical trajecto
of the pendulum, by which different initial points reach th
final state, change winding number abruptly at the disco
nuities in x(t→`) and the breaks define initial points o
exceptional trajectories along which the Lyapunov expon
of the randomly driven system is positive.

We emphasize that the mapping given by each s
x(nt2t)→x(nt), is continuous and that it is only in th
limit n→` that the graph is strictly discontinuous. Howeve
the numerical simulations show that ‘‘breaks’’ typical
emerge~i.e., are resolved at any given level of numeric
accuracy! over a short interval in the evolution of the syste
and remain intact for all later times. To see this, we exam
the separationDx(t)5x2(t)2x1(t) versus timet ~see Fig. 3!
for two close initial conditions,x1(0) andx2(0), onopposite
sides of a discontinuity~‘‘break’’ ! in the graph ofx(t→`)
versusx(t50). At small timesDx(t) is approximately zero.
Over a short interval of time~e.g., from t'20 to t'45 in
Fig. 3!, we find thatDx(t) changes abruptly to a nonzer
value, close to its final valueDx(t→`)5m, which is an
integer.

The formation of the break illustrated in Fig. 3 is typic
of the break formation found for the models considered he
During a typical interval,x1(t) andx2(t), adjacent points a
t50 on a uniform grid with spacinge, converge exponen

FIG. 3. SeparationDx(t)5x2(t)2x1(t) vs timet for two points
on opposite sides of a discontinuity~‘‘break’’ ! in the graph shown
in Fig. 2. The initial separationDx(0)51026.
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tially since theaverageLyapunov exponent along a typica
trajectory is negative. However, fluctuations in the Lyapun
exponent occur and it may remain positive for some subs
tial interval. Over this confined interval of timex1(t) and
x2(t) may diverge sufficiently from each other@20# that their
separation becomes comparable to 1.~This occurs when the
trajectory happens by chance to spend a long time nea
unstable equilibriumx5n11/2.! After that time x1(t)61
may come close tox2(t) and remain so for all times after, n
subsequent fluctuation in the Lyapunov exponent being
ficiently large to overcome the average negative value
causesx1(t)61 to converge exponentially tox2(t). At the
level of resolution defined by the grid spacing,e, we may
then say that a break occurs betweenx1(0) andx2(0).

If we now wish to locate the position of the break at
higher level of resolution and consider the evolution of
finer uniform grid ofm points ~with spacinge/m! initially
lying betweenx1(0) and x2(0), it immediately becomes
clear that the structure of breaks has a statistically s
similar structure, as follows: Oncex1(t)61 has converged
close tox2(t) ~at some timet0.0!, them points that initially
lay betweenx1(0) andx2(0) have been stretched around t
entire circle.~We note again that this stretching in practi
occurs over a relatively confined interval in the evolution
the system—see Fig. 3.! The dynamics of the system~deter-
mined by the selection of velocitiesvn! is statistically homo-
geneous in time, since allvn are identically distributed ran
dom variables. Thus, the evolution of the finer grid
@x1(0),x2(0)# ~which has been stretched to the full circle
t5t0! and the structure of breaks formed on that inter
after t5t0 is essentially identical to that of the coarser gr
on @0,1# after t50.

Thus, what appears as a single break on ane grid may
appear composed of many ‘‘sub-breaks’’ on a finer (e/m)
grid ~see Fig. 2!. Although the specific number of breaks an
the positions at which they appear in the grid depends on
specific realization of the thermal environment~i.e., the se-
ries of velocities$v1 ,v2 ,...% chosen!, the structure of breaks
must appear statistically similar at all levels of resolutio
Because of the way in which breaks are formed by the r
dom dynamics, the formation of breaks on finer grids cor
sponds to dynamics at later stages of evolution of the syst
This is analogous to the formation of fractal basin bounda
for the sinusoidally driven pendulum@12,21#.

In the Langevin implementation of thermal coupling, th
breaks we identify are the intersection of the constant ini
velocity slicev(0)5v with the fractal basin boundaries o
the system driven by the sequence of impulses$dv%. Each
basin corresponds to initial conditions that lead to final t
jectories with the same integer part ofx. ~Again we note
that almost all initial conditions lead to the same final phy
cal state of the pendulum, i.e., the same fractional part ox,
so that these are not basin boundaries for the physical
tion.!

A fractal dimensiond of breaks may be defined and ca
culated by successively examining sub-breaks in the follo
ing procedure, which is suggested by the qualitative disc
sion, above: a long sequence of velocities$vn% is chosen and
a uniform grid of m initial points is evolved. The grid is
analyzed for breaks in the graph of final versus initial po
tion ~as in Fig. 2!. One of these break intervals is chosen~at
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random! and a finer uniform grid ofm initial points on that
interval is evolved using thesame setof velocities$vn%. This
grid of m points is, in turn, analyzed for breaks, one of
break intervals chosen, andm uniformly spaced points on
that interval evolved, again using the same velocities$vn%,
and so on. The fractal dimension is then defined@21# by

d5
ln nb

ln m
, ~9!

wherenb is the average number of sub-breaks that appea
each grid ofm points. For the Langevin implementation o
the motion, the fractal dimension of breaks for the const
initial velocity slices, given in Eq.~9!, is equal tod221,
whered2 is the fractal dimension of the basin boundaries
the full two-dimensional space of initial conditions@x,v#.

The fractal dimension of breaks versus environmen
coupling strength is shown in Fig. 4 for a temperaturekBT
51. Each point was calculated by averagingd over seven
generations of ‘‘sub-breaks’’ withm5100 ~from e51022

down to e510214! for 100 separate realizations of the ra
dom noise. We find thatd is zero for values of 1/g less than
approximately 0.3 and values oft less than 0.7 and thatd
approaches 1 near the transition to chaotic behavior for e
type of motion. These features will be discussed in detai
Sec. IV C, below.

IV. ANALYTIC RESULTS

A number of features of the behavior of the Lyapun
exponent shown in Fig. 1 and the fractal dimension show
Fig. 4 can be understood by an analysis of the motion
various limiting cases. First we consider the low-temperat
limit, where the system is almost harmonic. Then we exa
ine the regime of strong coupling~i.e., very largeg or very
small t!. Finally, we demonstrate some exact results c
cerning the fractal structure of breaks, calculated numeric
in Sec. III B, above, and derive some corresponding res
for the Lyapunov exponents at arbitrary temperatures.

A. Low-temperature limit

In the limit kBT!1/p, the Boltzmann distribution for the
coordinate of the particle is concentrated nearx50 and the
system is approximately linear, with a force2]V/]x'

FIG. 4. Fractal dimensiond of the break structure, defined i
Eq. ~9!, vs inverse coupling strength, 2/g for damped motion andt
for stop-start motion, at temperaturekBT51.
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22px. In this limit, the Lyapunov exponents for the Lang
vin motion are approximately the same as for damped sim
harmonic motion, viz.,

g'2
g

2
6ReAg2

4
22p, ~10!

both of which are negative for all values ofg. Thus, the
motion is nonchaotic for arbitrarily weak coupling to th
environment at sufficiently low temperatures. We see t
taking the larger Lyapunov exponent~1 sign! in Eq. ~10!
gives a good approximation tol1 @see Fig. 1~a!# for the
Langevin motion at temperaturekBT50.1. Even at larger
temperatures, we see from Fig. 1~a! that the deep minimum
in l1(g) occurs near the critical damping factorgc5A8p
for small amplitude motion~or 1/gc51/A8p50.1995!.

The low-temperature Lyapunov exponent for stop-st
motion may also be calculated exactly@10# and its form re-
veals the origin of the sharp minima seen inl of Fig. 1~b!.
By considering the equations of motion for two trajectori
infinitesimally close tox(t), it is straightforward to show
that the derivativef (t)5dx(t)/dx(0) satisfies the equation

d2f

dt2
52K~ t ! f , ~11!

whereK(t)5d2V/dx2 at x5x(t), with the initial conditions
f 51 and d f /dt50 at t50. For sufficiently low tempera-
tures,x'0 andK(t)'2p for all t. Thus, Eq.~11! can be
integrated analytically to givef (t)5cos(A2pt) and the low-
temperature Lyapunov exponent for stop-start motion, wit
time intervalt between collisions, is

l~t!'
1

t
lnucos~A2pt!u. ~12!

We see thatl, given in Eq.~12!, is always nonpositive and
as in the case of Langevin motion, the system is noncha
for arbitrarily weak coupling to the environment at suf
ciently low temperature.

The low-temperature approximation ofl~t! given in Eq.
~12! has infinitely deep minima at values oft
5P/4,3P/4,5P/4, . . . , where P5A2p is the period of
small-amplitude oscillations aboutx50. In the harmonic ap-
proximation, any two particles started with the same veloc
reach precisely the same position at the end of a time inte
t5P/4,3P/4,5P/4, . . . This gives rise to the immediate
perfect synchronization achieved by stop-start motion
these values oft.

At nonzero temperature, these minima are no longer i
nite but they remain reasonably close to the values ot
5P/450.627, 3P/451.88, etc. As the temperature in
creases, these minima become less pronounced as the s
tical weight of points near@x,v#5@0,0# in the Boltzmann
distribution decreases. The low-temperature minima at lar
values oft are more strongly suppressed at high tempe
tures than the first minimum. This is as one might expe
since nonlinear effects have a larger effect on trajecto
integrated over longer timest.

Although l~t! given in Eq. ~12! is usually negative, it
reaches zero att5P/2,P,3P/2, . . . . This is closely related
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to the failure to reach thermal equilibrium, discussed in R
@10#, for the harmonic oscillator when the timet is a mul-
tiple of the period. Clearly, the change of sign ofl~t! close
to t51.3 for nonzero temperatures is strongly associa
with the first zero of the low-temperature approximation
l~t!.

B. Strong-coupling limit

We now consider the system at arbitrary temperature
the very-strong-coupling limit~large g or small t!. In this
limit, the two models give the same largest Lyapunov ex
nent whent52/g. Using the results of Ref.@4#, we find that
for stop-start motion,

l~t!'2
t

2 K ]2V

]x2 L as t→0. ~13!

To calculate the average stretching and contraction of ph
space areas in Langevin motion, we consider the phase-s
flow, given by

dx

dt
5Fx~x,v !5v,

dv
dt

5Fv~x,v !52gv2
]V

]x
.

The eigenvalues of](Fx ,Fv)/](x,v) are

l652
g

2
6Ag2

4
2

]2V

]x2 .

In the limit g@Au]2V/]x2u, one right eigenvector o
](Fx ,Fv)/](x,v) is approximately aligned with thex axis
and the other is approximately along the direction@1,g# in
the (x,v) phase space. The eigenvalue associated with thx
axis is small, and is approximately

l1'2
1

g

]2V

]x2 .

The other eigenvalue is large and negative, and is appr
mately

l2'2g1
1

g

]2V

]x2 .

Because the right eigenvectors of](Fx ,Fv)/](x,v) are ap-
proximately independent of time, the Lyapunov exponents
the Langevin motion are equal to the time average ofl6 .
~The presence of random impulsesdv in Langevin motion
does not affect the stretching and contraction of phase-s
areas since eachdv gives a simple shift to all phase-spa
points: @x,v#→@x,v1dv#.! Thus, in the limit g
@Au]2V/]x2u for all x, the larger average Lyapunov exp
nent is given by

l1~g!'2
1

g K ]2V

]x2 L , ~14!
f.
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which is identical to the expression forl~t! in Eq. ~13!, with
t replaced by 2/g. This is in accord with the derivation o
both the Langevin equation and the stop-start motion fr
the physical model of colliding particles presented in Sec.

As the temperatureT increases, we see in Fig. 1 thatl~t!
andl1(g) increase for small values oft and 1/g. This is in
accord with Eqs.~13! and ~14!; as the temperature is in
creased, the average curvature]2V/]x2 decreases becaus
the Boltzmann weight becomes larger near the unstable e
librium point, x51/2, where the curvature is negative. A
T→`, all positionsx become equally likely and

K ]2V

]x2 L→E
0

1 ]2V

]x2 dx50.

However, as shown in Ref.@4#, the thermal average
^]2V/]x2& is positive for all finite temperatures, and so th
larger Lyapunov exponent is always negative for sufficien
large coupling to the environment.

C. Folding and the structure of breaks

We now turn to consideration of the fractal structure
breaks, for which numerical results were presented in S
III. We will demonstrate that the fractal dimensiond, de-
fined in Eq.~9!, is exactly zero for all values oft less than
P/4, whereP is the period of small-amplitude oscillation
aboutx50, and for all values ofg greater than the critica
damping factorgc for small amplitude motion. In doing so
we indirectly demonstrate a much stronger result than
given in Sec. IV B, concerning the sign of the Lyapun
exponents: viz., that the exponents are negative at all t
peratures for values oft less thanP/4 and for values ofg
greater than the critical damping factorgc5A8p.

The key analytic result which enables us to derive th
results is a type of ‘‘no-folding’’ theorem, which states tha
given a sequence of velocity impulses~$vn% for stop-start
motion or $dv% for damped motion!, the mappingx(0)
→x(t) has positive derivativedx(t)/dx(0) for all t.0
when t,P/4 or g.gc . Thus, the mappingx(0)→x(t) is
always invertible. For damped motion, this result applies
all constant initial velocity slices. This means that the tim
evolution of a line of initial conditions never ‘‘folds’’ the
line on top of itself. The importance of folding for the ons
of chaos in bounded systems is well known@22#. Since the
stop-start motion is one dimensional, invertibility of the m
immediately implies that the motion is nonchaotic@23#. In
the case of damped motion, we can also show that the
tion is nonchaotic forg,gc , but this requires some add
tional mathematical details, which we defer to the Append

If the mapping x(0)→x(t) has a positive derivative
dx(t)/dx(0) for all x(0) andt ~and hence is invertible!, then
it follows that there is exactly one break~i.e., exactly one
unstable trajectory! and the fractal dimension of the set o
breaks is zero. To prove this, we note that in the noncha
regime, all stable trajectories converge at large times to
jectoriesx(t) which differ from each other by an intege
Thus, if x1(t) and x2(t) are typical trajectories,x2(t)
2x1(t)→n, an integer, ast→`. Now consider the evolu-
tion of the line segment@0,1# of initial values of x. If
x1(0)50 andx2(0)51, thenx2(t)2x1(t)51 for all t.0.
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Sincedx(t)/dx(0) is always positive, it follows thatx1(t)
,x(t),x2(t) for all t.0, if 0,x(0),1. Thus, eitherx(t)
→x1(t) or x(t)→x2(t)5x1(t)11, ast→`. In the first case
@viz. x(t)→x1(t)#, thenx8(t)→x1(t), for all x8(0) with 0
,x8(0),x(0). In the second case@viz. x(t)→x1(t)11#,
thenx8(t)→x1(t)11, for all x8(0) with 1.x8(0).x(0).

From this we see that the line of initial conditions brea
in two at some pointxb : all points greater thanxb converge
to x2(t) and all points less thanxb converge tox1(t). The
point x(0)5xb is then the initial point of the only unstabl
trajectory. The location ofxb is determined by the specifi
sequence of values chosen for the driving impulses of
thermal environment. We note that at zero temperaturexb
51/2, corresponding to the point of unstable equilibrium
the pendulum.

Because of the ergodicity of the Brownian motion, almo
all initial conditions lead to trajectories with the same av
age Lyapunov exponent. Thus, eitherudx(t)/dx(0)u→` or
udx(t)/dx(0)u→0 as t→` for almost all x(0). However,
since

E
0

1 dx~ t !

dx~0!
dx~0!51 for all t.0, ~15!

only the second option,udx(t)/dx(0)u→0 ast→`, can oc-
cur whendx(t)/dx(0).0 for all x(0). Thus, it immediately
follows that stop-start motion is nonchaotic if the derivati
dx(t)/dx(0) is always positive. The corresponding result
proven for Langevin motion in the Appendix.

We now demonstrate that for stop-start motion the m
ping x(0)→x(t) ~for any given realization$vn% of the ther-
mal velocities! has positive derivativef (t)5dx(t)/dx(0) if
the timet is less thanP/4. It suffices to show this result fo
the first stept5t only, since all subsequent steps are equi
lent and the derivativedx(nt)/dx(0) is the product of then
derivativesdx(mt)/dx„(m21)t…, for m51, . . . ,n.

It was shown in Sec. IV A that the derivativef (t) satisfies
Eq. ~11! during the time interval 0,t,t. The initial condi-
tions aref 51 andd f /dt50 at t50. Note that the condition
d f /dt50, corresponds to the fact that all trajectories a
given the same velocitydx/dt5vn at the start of each step
AlthoughK(t) depends on the random trajectory followed,
is always less than the maximum curvature of the poten
Kmax52p, which occurs whenx(t)50.

To show that the solution of Eq.~11! is always positive
for t,P/4, we use the standard comparison theorems@24#
for linear second-order ordinary differential equations, tak
the equation

d2z

dt2
52Kmaxz ~16!

for comparison with Eq.~11!. For the purposes of this dem
onstration, we consider Eq.~11! to be analytically continued
@25# to the interval2t<t,0, taking K(2t)5K(t) for 0
<t<t. Then, sinced f /dt50 at t50, it follows that
f (2t)5 f (t) for the analytic continuation of the solution o
Eq. ~11!. If f (t) were zero for any value oftP(0,P/4), then
there would be at least two zeros of the analytically con
ued f in the interval2P/4,t,P/4. However, the function
cos(AKmaxt), which satisfies Eq.~16!, has no zeros betwee
e

f

t
-

-

-

e

l,

g

-

2P/4 and1P/4. This contradicts the comparison theore
@24#, which states that, sinceK(t),Kmax for all t, there is at
least one zero of the solution of Eq.~16! between any two
zeros of a solution of Eq.~11!. Hence, there are no zeros o
f (t) in the interval 0,t,P/4.

Thus, f is always positive fort,P/4, and the mapping
x(0)→x(t) is invertible. Hence, ift,P/4, the mapping
x(nt2t)→x(nt) is always invertible~regardless ofvn!, the
evolution of the system is nonchaotic, and exactly one
jectory is unstable for any set of velocities$v1 ,v2 ,...%. The
same result is shown in the Appendix for constant init
velocity slices in the Langevin motion withg.gc .

Conversely, for damped motion or stop-start motion, ifg
is less than critical damping for harmonic motion ort
.P/4, respectively, the fractal dimension of the break str
ture is greater than zero. This follows from the fact that t
map is not invertible nearx(0)50 for small velocity and
folding of the region nearx50 occurs. Because of the e
godicity of the thermal motion, this means folding is possib
~at large times! near any pointx and multiple breaks will
occur in the graph ofx(t→`) versusx(0) if a break is
created in a region after it has been folded on itself.~Numeri-
cally, we find that this is the common mechanism for form
tion of multiple breaks.! Once multiple breaks are possible,
immediately follows from the statistical homogeneity of th
motion in time that the fractal dimension of the break stru
ture is greater than zero.

Near the transition to chaotic behavior, the avera
Lyapunov exponent over an infinitely long walk is approx
mately zero. In this regime, two pointsx1 andx2 may remain
very close for very long periods of time when the avera
Lyapunov exponent is negative over that time interval a
yet subsequent positive fluctuations in the Lyapunov ex
nent can lead to a break forming betweenx1 andx2 . Thus, in
the nonchaotic regime near the transition to the chaotic
gime, the fractal dimension of breaks tends to 1 as the pr
ability of a break evolving in any given interva
@x1(0),x2(0)# at some stage of an infinitely long walk tend
to one. On the chaotic side of the transition, the concept
‘‘break’’ strictly can not be defined in the infinite-time limi
since any exponential convergence of two pointsx1 and x2
must be overcome at a later stage by an exponential di
gence. However, because the probability distribution ofx1
2x2 is very strongly peaked near 0 when the avera
Lyapunov exponent is approximately zero~but positive!
@3,6#, a remanent of break formation can be observed e
for large simulation times for small positive Lyapunov exp
nents.

As a final point relating to the fractal structure of brea
and its relationship to the Lyapunov exponent, we obse
that, for stop-start motion, the derivative

dl

dt
→2` at t5P/4.

This follows from consideration of the integrand in the e
pression forl~t!, given in Eq.~8!. The term

f ~x,v;t!5
]x~t!

]x~0!
U

v~0!5v
x~0!5x
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has a local minimum at~x50, v50! for each fixed value of
t,P/4. Ast is increased from zero,f (0,0;t) decreases from
1 to 0, crossingf 50 for the first time att5P/4. Any two-
dimensional integral of the form in Eq.~8! will have an
infinite negative derivative int when the termf (x,v;t) in
the log first crosses zero. Thus, the transition from frac
dimensiond50 to d.0 for the structure of breaks is ass
ciated with an infinite negative derivative of the Lyapun
exponentl as a function of the environmental couplingt.
This is seen quite clearly in the numerical results shown
Fig. 1~b!.

V. DISCUSSION AND CONCLUSIONS

The striking similarity of the results for stop-start motio
and Langevin motion, despite the difference between th
formal representation, can be traced to the fact that the r
of the two Lyapunov exponents for damped moti
l1(g)/l2(g)'l1(g)/g is usually small, except forg
,gc in the low-temperature, harmonic limit. This means th
for Langevin motion the velocity difference of two nearb
trajectories decays much more rapidly than the position
ference and the phase space is effectively one-dimensio
as it is for stop-start motion. Moreover, on the time-sc
defined by 1/l1(g), which determines the convergence
positions in Langevin motion, the time between collisions
stop-start motion witht52/g is small, so that the differenc
between continuous~Langevin! damping and sudden~stop-
start! damping at intervals oft is not qualitatively important.

The analysis of the nonchaotic regime of motion for bo
stop-start and Langevin motion of the simple pendulum
veals that the essential precursor of chaos in this regim
the existence of a set of unstable trajectories. Although th
trajectories are exceptional and have no statistical weigh
the ‘‘typical’’ response of the system to the driving by i
thermal environment, they are, nevertheless, highly sign
cant. Although the particular set of points that lead to u
stable trajectories depends on the specific realization of
thermal noise, its fractal dimension can be characterized
statistical sense and the onset of chaos from the nonch
regime can be associated with the growth of the fractal
mension from zero to one.

This fractal structure is strongly associated with the fo
ing action of the phase-space dynamics of the system dr
by thermal forces. We have seen that when no folding
curs, for each choice of the sequence of environmental d
ing forces, there is only one initial value ofx leading to an
unstable trajectory and the system is nonchaotic. The b
boundaries are then simple.

Each basin of attraction corresponds to initial conditio
leading to final trajectories with the same integral part ofx;
in terms of the physical pendulum motion, these basins c
respond to trajectories which have the same winding num
As folding and stretching become more effective, and
fractal dimension of the basin boundaries grows, the ba
of attraction for different winding numbers become infi
trated into one another. It then takes a longer and longer t
for the final winding number of a particular initial conditio
to be determined. As the transition to chaos is approache
takes an infinite time for the winding number to be decid

Although the pendulum has provided a very useful pro
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type for the analysis of these effects, many of the res
obtained above can be extended to arbitrary bounded
dimensional systems. It is clear that the maximum curvat
Kmax is the crucial aspect of the potential which ensures t
no folding occurs for either stop-start or damped motio
This maximum curvature occurs at the point of stable eq
librium for the pendulum~i.e., the pendulum potential ha
‘‘soft’’ anharmonicity!. This is not true for a general poten
tial. We see from the details of the proofs given for t
pendulum that it is the maximum curvature of the potent
rather than the curvature at the stable equilibrium, which
general determines critical values ofg52AKmax and t
52p/AKmax. For environmental coupling greater than the
critical values ofg or 1/t, the system is nonchaotic at a
temperatures.

In conclusion, we have shown that for a pendulu
coupled to a thermal environment, the precursor of chao
the nonchaotic regime is the existence of a fractal set
unstable trajectories for each noise realization. The fra
structure of this set is associated with the folding and stre
ing action of the phase-space dynamics. The dimension
this set is zero~i.e., exactly one trajectory is unstable! for
coupling larger than a critical value in two distinct types
coupling to the environment, damped motion and stop-s
motion. The range of values of the environmental coupl
for which the fractal dimension is zero~and exactly one tra-
jectory is unstable! does not depend on temperature a
bears a strikingly simple relation to elementary characteri
constants of thesmall-amplitudemotion about equilibrium:
for damped motion, the fractal dimension is zero for
damping ratesg greater than the usual critical damping f
small amplitude oscillations; for stop-start motion, the frac
dimension is zero for all stop-start timest less thanP/4,
where P is the period of small amplitude oscillations. Fo
environmental coupling greater than these values, no fold
occurs and the motion is nonchaotic at all temperatures.
environmental coupling less than these critical values,
fractal dimension of the set of initial points of the unstab
trajectories grows until it equals 1 at the transition to t
chaotic regime. The similarities between damped mot
with damping coefficientg and stop-start motion witht
52/g, in terms of the fractal structure and also of the larg
Lyapunov exponent, have been investigated numerically
analytically. These results have corresponding general
tions for arbitrary bounded one-dimensional systems.

APPENDIX: ‘‘NO-FOLDING’’ THEOREM
FOR LANGEVIN MOTION

We first demonstrate that for damped motion the mapp
x(0)→x(t) ~for a given noise realization$dv%! has positive
derivativedx(t)/dx(0) on each constant initial velocity slic
when the damping coefficientg.gc , so that small ampli-
tude motion is overdamped. We then further demonstr
that, in this case, the motion is nonchaotic.

For reference later in the discussion, we consider the t
evolution of a more general curve of initial conditions, spe
fied by

x~0!5j, v~0!5v0~j! for 0,j,1. ~A1!
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The constant initial velocity slices are a particular case
this type of curve of initial conditions, wherev0(j)
5constant. We define

f ~j;t !5
dx~ t !

dj
5

]x~ t !

]x~0!
U

v~0!

1
dv0

dj

]x~ t !

]v~0!
U

x~0!

. ~A2!

By considering the equations of motion for two trajector
with initial conditions along the curve~A1!, we find the ana-
log of Eq. ~11! for the Langevin motion:

d2f

dt2
52g

d f

dt
2K~ t ! f , ~A3!

whereK(t)5d2V/dx2 at x5x(t), with the initial conditions
f 51 and d f /dt5dv0 /dj at t50. The functionK(t) de-
pends on the random trajectoryx(t). However,K(t) is never
larger than the maximum curvatureKmax5d2V/dx2 of the po-
tential, which occurs atx50.

Defining the function

g~j;t !5exp@gt/2# f ~j;t !,

we see thatg satisfies the equation

d2g

dt2
5Fg2

4
2K~ t !Gg, ~A4!

with initial conditionsg51 anddg/dt5dv0 /dj1g/2 at t
50.

For all values ofg.gc , the term@g2/42K(t)# in Eq.
~A4! is always positive. Hence, ifg51 anddg/dt>0 at t
50, g(t) must be positive for allt.0. To demonstrate this
suppose on the contrary thatg(t)50 for somet.0. Assume
that the first such zero ofg is at t5t1 . Theng(t).0 for all
tP@0,t1#. Also, dg/dt,0 for t5t1 . However,

dg

dtU
t5t1

5
dg

dtU
t50

1E
0

t1 d2g

dt2
dt

5
dg

dtU
t50

1E
0

t1Fg2

4
2K~ t !Ggdt. ~A5!

This is clearly a contradiction; the left-hand side of Eq.~A5!
is negative but the first term on the right-hand side is
sumed to be non-negative and the second term is the inte
of a positive quantity.

Thus, we obtain the following result for Langevin motio
when g.gc52AKmax: for each value ofj, the function
f (j;t).0 for all t.0 if the curve of initial conditions satis
fies

dv0

dj
>2g/2 ~A6!
f

-
ral

at that value ofj.
We now apply this result to the constant velocity slice

for which dv0 /dj50. These slices of initial conditions
clearly satisfy Eq. ~A6! for all j. We now have that
dx(t)/dx(0)5dx(t)/dj.0, which was the ‘‘no-folding’’
condition we wished to demonstrate. Moreover, along a
constant velocity slice, Eq.~15! is valid. This then leads to
the conclusion that, for almost all initial conditions

]x~ t !

]x~0!
U

v~0!

→0 as t→`, ~A7!

i.e., the final position is not sensitive to the initial positio
wheng.gc .

By considering a curve of initial conditions with
dv0 /dj52g/2, we see that

]x~ t !

]x~0!
U

v~0!

2
g

2

]x~ t !

]v~0!
U

x~0!

.0, ~A8!

for all initial conditions. Similarly, considering a curve o
initial conditions withdv0 /dj5g/2, we see that

]x~ t !

]x~0!
U

v~0!

1
g

2

]x~ t !

]v~0!
U

x~0!

.0. ~A9!

Combining Eqs.~A8! and~A9!, we find the general result fo
Langevin motion:

U ]x~ t !

]x~0!
U

v~0!

.
g

2 U ]x~ t !

]v~0!
U

x~0!

, ~A10!

for all initial conditions wheng.gc . From Eqs.~A7! and
~A10!, it follows that

]x~ t !

]v~0!
U

x~0!

→0 as t→`, ~A11!

for almost all initial conditions wheng.gc .
Equations~A7! and ~A11! express the fact that the fina

position x(t) is insensitive to the initial positionx(0) and
velocity v(0), respectively. Differentiating these two equ
tions with respect tot demonstrates that the final velocit
v(t) is also insensitive to the initial position and velocit
This completes the proof that the final phase-space coo
nates, given a particular realization of thermal impulses$dv%
in Langevin motion, are insensitive to the initial condition
for almost all trajectories when the damping factorg.gc .
Thus, the Langevin motion is nonchaotic at arbitrary te
peratures for allg.gc .
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